84. J. J. Kennedy-Ellis, A. D. Kelleher, J. A. Sayeed, A. S. Burde and S. R. Chemler,* (2024) “Enantioenriched allylesters via a copper-catalyzed diene carboesterification with alkyltrifluoroborates and carboxylic acids,” accepted in J. Org. Chem.
83. S. R. Chemler (2024), “Copper-catalyzed Generation of Nitrogen-centered Radicals and Reactions Thereof,” submitted to Arkivoc as an invited contribution for Prof. Samir Zard’s honorary issue.
82. R. L. L. Carmo, S. L. Galster, T. Wdowik, C. Song, S. R. Chemler* (2023), “Copper-Catalyzed Enantioselective Aerobic Alkene Aminooxygenation and Dioxygenation: Access to 2-Formyl Saturated Heterocycles and Unnatural Proline Derivatives,” J. Am. Chem. Soc. 2023, 145, 13715-13729. https://pubs-acs-org.gate.lib.buffalo.edu/doi/10.1021/jacs.3c01985
81. S. R. Chemler* and J. J. Kennedy-Ellis (2022), “Copper-Catalyzed Alkene Difunctionalizations,” in press, Base-Metal Catalysis, Science of Synthesis, N. Yoshikal, Ed.
80. A. S. Burde, S. R. Chemler* (2022), “Copper-Catalyzed Enantioselective Oxysulfenylation of Alkenols: Synthesis of Arylthiomethyl-Substituted Cyclic Ethers,” ACS Catalysis, 12, 7559-7564. https://pubs.acs.org/doi/pdf/10.1021/acscatal.2c02214
79. J. Li, R. Lama, S. L. Galster, J. R. Inigo, J. Wu, D. Chandra, S. R. Chemler, X. Wang* (2022), “Small Molecule MMRi62 Induces Ferroptosis and Inhibits Metastasis in Pancreatic Cancer via Degradation of Ferritin Heavy Chain and Mutant p53, Molecular Cancer Therapeutics, 21, 535-545. https://aacrjournals.org/mct/article-abstract/21/4/535/689573/Small-Molecule-MMRi62-Induces-Ferroptosis-and?redirectedFrom=fulltext
78. I. A. Berhane, A. S. Burde, J. J. Kennedy-Ellis, E. Zurek and S. R. Chemler* (2021), “Copper-Catalyzed Enantioselective Alkene Carboetherification for the Synthesis of Saturated Six-Membered Cyclic Ethers,” Chem. Commun., 57, 10099-10102. https://pubs.rsc.org/en/content/articlelanding/2021/cc/d1cc03515k
77. S. R. Chemler,* D. Chen, S. D. Karyakarte, J. M. Shikora, T. Wdowik (2021), “Transition Metal Catalyzed Aminooxygenation of Alkenes,” Organic Reactions, 108, 421-962. https://www.wiley.com/en-us/Organic+Reactions,+Volume+108-p-9781119832072
76. A. J. Pradhan, D. Lu, L. R. Parisi, S. Shen, I. A. Berhane, S. L. Galster, K. Bynum, V. Monje-Galvan, O. Gokcumen, S. R. Chemler, J. Qu, J. G. Kay, G. E. Atilla-Gokcumen* (2021), “Protein Acylation by Saturated Very Long Chain Fatty Acids and Endocytosis are Involved in Necroptosis,” Cell Chem. Biol., 28, 1298. https://pubmed.ncbi.nlm.nih.gov/33848465/
75. A. S. Burde, S. D. Karyakarte,E. D. Sylvester, S. R. Chemler* (2021), “Copper-Catalyzed Enantioselective Synthesis of Bridged Bicyclic Ketals from 1,1-Disubstituted-4-methylene-1,6-hexanediols and Related Alkenols,” Chem. Commun., 57, 105-108. https://pubs.rsc.org/en/content/articlelanding/2021/cc/d0cc06404a
74. J. J. Kennedy-Ellis, E. D. Boldt, S. R. Chemler* (2020), “Synthesis of Benzylureas and Related Amine Derivatives via Copper-catalyzed Three-component Carboamination of Styrenes,” Org. Lett., 22, 8365-8369. https://pubmed.ncbi.nlm.nih.gov/33074005/
73. T. Wdowik, S. Galster, R. L. de Carmo, S. R. Chemler* (2020), “Enantioselective, Aerobic Copper-Catalyzed Oxidative Cyclization of Alkenols and N-(4-Pentenyl)arylsulfonamides: Synthesis of Fused Ring and Spirocyclic Saturated Heterocycles,” ACS Catalysis, 10, 8535. https://pubs.acs.org/doi/abs/10.1021/acscatal.0c02607
72. D. Chen, I. A. Berhane, S. R. Chemler* (2020), “Copper-Catalyzed Enantioselective Hydroalkoxylation of Alkenols for the Synthesis of Cyclic Ethers,” Org. Lett., 22, 7409-7414. Selected for October 2020 Issue Cover. https://pubs.acs.org/doi/abs/10.1021/acs.orglett.0c01691
71. L. R. Parisi, S. Sowlati-Hashjin, I. A. Berhane, S. L. Galster, K. A. Carter, J. F. Lovell, S. R. Chemler, M. Karttunen, G. E. Atilla-Gokcumen* (2019) “Membrane Disruption by Very Long Chain Fatty Acids During Necroptosis,” ACS Chem. Biol., 14, 2286-2294.
70. J. M. Shikora, C. Um, Z. M. Khoder, S. R. Chemler* (2019) “Saturated Oxygen and Nitrogen Heterocycles via Oxidative Coupling of Alkyltrifluoroborates with Alkenols, Alkenoic Acids and Protected Alkenylamines,” Chem. Sci., 10, 9265-9269. https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc02835h
69. D. Chen, S. R. Chemler* (2018), Synthesis of Phthalans Via Copper-Catalyzed Enantioselective Cyclization/Carboetherification of 2-Vinylbenzyl Alcohols,” 20, 6453-6456.
68. S. D. Karyakarte, C. Um, I. A. Berhane, S. R. Chemler* (2018), Synthesis of Spirocyclic Ethers by Enantioselective Copper-Catalyzed Carboetherification of Alkenols, Angew. Chem. Int. Ed., 57, 12921-12924. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201808554
67. J. M. Shikora, S. R. Chemler* (2018), Synthesis of Benzylamines via Copper-Catalyzed Enantioselective Aza-Friedel-Crafts Addition of Phenols to N-Sulfonyl Aldimines, Org. Lett. 20, 2133-2137.
66. T. Wdowik, S. R. Chemler* (2017), Direct Synthesis of 2-Formylpyrrolidines, 2-Pyrrolidinones and 2-Dihydrofuranones Via Aerobic Copper-Catalyzed Aminooxygenation and Dioxygenation of 4-Pentenylsulfonamides and 4-Pentenylalcohols, J. Am. Chem. Soc. 139, 9515-9518. https://pubs.acs.org/doi/10.1021/jacs.7b05680
65. Z. M. Khoder, C. E. Wong, S. R. Chemler* (2017), Stereoselective Synthesis of Isoxazolidinones Via Copper-Catalyzed Alkene Diamination, ACS Catalysis 7, 4775-4779.
64. S. R. Chemler,* S. D. Karyakarte, Z. M. Khoder (2017) “Stereoselective and Regioselective Synthesis of Heterocycles Via Copper-Catalyzed Additions of Amine Derivatives and Alcohols to Alkenes,” J. Org. Chem., 82, 11311-11666. (invited Perspective, Cover of Issue, Nov. 3, dedicated to this review)
63. S. R. Chemler* and T. Wdowik (2017), “Aminohydroxylation and Aminooxygenation of Alkenes,” Chap. 5.3 in Catalytic Oxidation in Organic Synthesis, Vol. 25, Science of Synthesis, K. Muniz, ed., 1, 343-388.
62. C. Um, S. R. Chemler* (2016), Synthesis of 2-Aryl and 2-Vinylpyrrolidines Via Copper-Catalyzed Coupling of Styrenes and Dienes with Potassium beta-Aminoethyl Trifluoroborates, Org. Lett. 18, 2515-2518.
61. B. J. Casavant, Z. M. Khoder, I. A. Berhane, S. R. Chemler* (2015), Copper(II) Promoted Cyclization/Difunctionalization of Allenols and Allenylsulfonamides: Synthesis of Heterocycle Functionalized Vinyl Carboxylates, Org. Lett. 17, 5958-5961.
60. S. Karyakarte, F. C. Sequeira, G. H. Zibreg, G. Huang, J. P. Matthew, M. M. M. Ferreira and S. R. Chemler* (2015), Copper-promoted synthesis of 1,4-benzodiazepinones via alkene diamination, Tetrahedron Lett., 56, 3686-3689. (Invited for memorial issue for Harry Wasserman.)
59. T. W. Liwosz, S. R. Chemler*, (2015) Copper-Catalyzed Synthesis of N-Aryl and N-Sulfonyl Indoles from 2-Vinylanilines with O2 as Terminal Oxidant and TEMPO as Co-Catalyst, Synlett, 26, 335-339. (Invited for cluster issue on earth abundant metals in catalysis.)
58. S. R. Chemler (2015) “Copper Catalysis in Organic Synthesis,” Beilstein J. Org. Chem. 11, 2252-2253.
57. B. J. Casavant, A. S. Hosseini, S. R. Chemler* (2014), 6-Azabicyclo[3.2.1]octanes Via Copper-Catalyzed Enantioselective Alkene Carboamination, Adv. Syn. Cat., 356, 2697.
56. M. T. Bovino, T. W. Liwosz, N. E. Kendel, Y. Miller, N. Tyminska, E. Zurek,* S. R. Chemler,* (2014) Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes, Angew. Chem. Int. Ed., 53, 6383.
55. B. W. Turnpenny and S. R. Chemler* (2014), “Copper-Catalyzed Alkene Diamination: Synthesis of Chiral 2-Aminomethylindolines and Pyrrolidines,” Chem. Sci. 5, 1786.
54. L. Belding, S. R. Chemler, T. Dudding* (2013), “A Computational Study of the Copper(II)-Catalyzed Enantioselective Intramolecular Aminooxygenation of Alkenes,” J. Org. Chem. 78, 10288.
53. T. W. Liwosz and S. R. Chemler* (2013), “Copper-Catalyzed Oxidative Amination and Allylic Amination of Alkenes,” Chemistry: A European Journal (Wiley-Blackwell), 19, 12771.
52. T. W. Liwosz and S. R. Chemler* (2013), “Copper-Catalyzed Oxidative Heck
Reactions between Alkyltrifluoroborates and Vinyl Arenes,” Org. Lett. (ACS), 15, 3034-3037. http://pubs.acs.org/doi/pdf/10.1021/ol401220b
51. M. C. Paderes, J. B. Keister,* S. R. Chemler* (2013), “Mechanistic Analysis and Optimization of the Copper-Catalyzed Enantioselective Intramolecular Alkene Aminooxygenation,” 78, 506.
50. S. R. Chemler* and M. T. Bovino (2013) “Catalytic Aminohalogenation of Alkenes and Alkynes,” ACS Catalysis, 3, 1076.
49. S. R. Chemler (2013) “Copper’s Contribution to Amination Catalysis,” Science, 341, 624-626.
48. S. R. Chemler* and D. A. Copeland (2013), “Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene Diamination, Aminoalkoxylation, or Dialkoxylation Reactions,” Top. Heterocycl. Chem. Springer-Verlag Berlin Heidelberg J. P. Wolfe, Ed.
47. B. W. Turnpenny, K. L. Hyman, S. R. Chemler* (2012), “Chiral Indoline Synthesis Via Enantioselective Intramolecular Copper-Catalyzed Alkene Hydroamination,” Organometallics, 31, 7819. https://pubs.acs.org/doi/10.1021/om300744m
46. F. C. Sequiera, S. R. Chemler* (2012), “Stereoselective Synthesis of Morpholines Via Copper(II)-Promoted Alkene Oxyamination,” Org. Lett. 14, 4482-4485.
45. S. Karyakarte, T. P. Smith, S. R. Chemler* (2012), “Stereoselective Isoxazolidine Formation via Copper-Catalyzed Alkene Aminooxygenation,” J. Org. Chem., 17, 7755-7760.
44. Y. Miller, L. Miao, A. Hosseini, S. R. Chemler* (2012) “Copper-Catalyzed Intramolecular Alkene Carboetherification: Synthesis of Fused-Ring and Bridged-Ring Tetrahydrofurans,” J. Am. Chem. Soc. 134, 12149-12156.
43. F. C. Sequeira, M. T. Bovino, A. J. Chipre, S. R. Chemler* (2012) “Multigram Synthesis of a Chiral Substituted Indoline via Copper-Catalyzed Alkene Aminooxygenation,” Synthesis, 44, 1481-1484 (invited special topic).
42. M. T. Bovino and S. R. Chemler* (2012), “Catalytic Enantioselective Alkene Aminohalogenation / Cyclization Involving Atom Transfer, ” Angew. Chem. Int. Ed. 51, 3923-3927.
41. T. W. Liwosz, S. R. Chemler* (2012), “Copper-Catalyzed Enantioselective Intramolecular Alkene Amination / Intermolecular Heck-type Coupling Cascade,” J. Am. Chem. Soc. 134, 2020-2023.
40. M. C. Paderes, L. Belding, B. Fanovic, T. Dudding,* J. B. Keister* and S. R. Chemler* (2012), “Evidence for Alkene Cis-Aminocupration, an Aminooxygenation Case Study: Kinetics, EPR Spectroscopy and DFT Calculations,” Chem. Eur. J. 18, 1711-1726.
39. S. R. Chemler* and B. J. Casavant (2012), “Copper(II) 2-ethylhexanoate,” contribution to The (electronic) Encyclopedia of Reagents for Organic Synthesis (e-EROS), A. B. Charette, editor.
38. M. C. Paderes and S. R. Chemler* (2011), “Stereoselective Copper-Catalyzed Intramolecular Alkene Aminooxygenation: Effect of Substrate and Ligand Structure on Selectivity,” Eur. J. Org. Chem. Special edition, 3679-3684.
37. S. R. Chemler (2011) “Evolution of copper(II) as a new alkene amination promoter and catalyst,” invited review, J. Organomet. Chem. 696, 150-158.
36. S. R. Chemler (2011), “Stereoselective nitrogen heterocycle synthesis mediated by chiral metal catalysts,” Chap. 16 in Catalytic Methods in Asymmetric Synthesis: Advanced Materials, Techniques, and Applications, Wiley-VCH, M. Gruttadauria, Ed.
35. L. Miao, I. Haque, M. R. Manzoni, W. S. Tham and S. R. Chemler* (2010), “Diastereo- and
Enantioselective Copper-Catalyzed Intramolecular Carboamination of Alkenes for the Synthesis of Hexahydro-1H-benz[f]indoles,” Org. Lett. 12, 4739-4741.
34. F. C. Sequiera. B. W. Turnpenny and S. R. Chemler* (2010), “Copper(II)-Promoted and Catalyzed Intermolecular Diamination of Alkenes,” Angew. Chem. Int. Ed., 49, 6365-6368.
33. M. Paderes and S. R. Chemler* (2009), “Diastereoselective Pyrrolidine Synthesis via Copper Promoted Intramolecular Aminooxygenation of Alkenes; Formal Synthesis of (+)-Monomurine,” Org. Lett. 11, 1915-1918.
32. E. S. Sherman and S. R. Chemler* (2009), “Copper(II)-Catalyzed Aminooxygenation and Carboamination of N-Aryl-2-allylanilines,” Adv. Synth. Catal. 351, 467-471.
31. S. R. Chemler, (2009) “Phenanthroindolizidines and Phenanthroquinolizidines: Promising Alkaloids for Anti-Cancer Therapy,” invited review, Current Bioactive Compounds, 5, 2-19.
30. S. R. Chemler (2009) “The enantioselective intramolecular aminative functionalization of unactivated alkenes, dienes, allenes and alkynes for the synthesis of chiral nitrogen heterocycles,” invited review, Organic and Biomolecular Chemistry, 7, 3009-3019.
29. S. R. Chemler (2009), “Product Class Amido Derivatives of Sulfanediol,” Science of Synthesis, Vol. 40, 40.9. E. Schaumann, D. Enders, Eds.
28. S. R. Chemler (2009), “Product Class Amido Derivatives of Sulfurous Acid,” Science of Synthesis, Vol. 40, 40.10, E. Schaumann, D. Enders, Eds.
27. E. S. Sherman, S. R. Chemler* (2009), “Product Class N-Alkylsulfamic Acids and Derivatives,” Science of Synthesis, Vol. 40, 40.11, E. Schaumann, D. Enders, Eds.
26. S. R. Chemler (2009), “Roush Allylboronation,” in Name Reactions for Homologations, J. Li and E. J. Corey, Eds., pps. 613-640.
25. J. Ni; T. Mai; S.-T. Pang, I. Haque, K. Huang, M. A. DiMaggio; S. Xie; N. S. James; D. Kasi; S. R. Chemler* and S. Yeh,* (2009) “Novel Vitamin E Ether Analog Inhibits Prostate Cancer Cell Growth In Vitro and In Vivo.” Clin. Cancer Res. 15, 898-906.
24. P. H. Fuller, J.-W. Kim, S. R. Chemler* (2008) “Copper catalyzed enantioselective intramolecular aminooxygenation of alkenes,” J. Am. Chem. Soc. 130, 17638-17639.
23. W. Zeng., S. R. Chemler* (2008) “Total Synthesis of (S)-(+)-Tylophorine Via Enantioselective Intramolecular Alkene Carboamination.” J. Org. Chem. 73, 6045-6047.
22. S. R. Chemler (2008) “Isopropenyllithium,” contribution to The Encyclopedia of Reagents for Organic Synthesis (EROS), L. Paquette, editor.
21. P. H. Fuller and S. R. Chemler* (2007) “Copper(II) Carboxylate Promoted Intramolecular
Carboamination of Alkenes for the Synthesis of Polycyclic Lactams,” Org. Lett. 9, 5477-5480.**
20. W. Zeng and S. R. Chemler* (2007) “Copper(II)-Catalyzed Enantioselective Intramolecular Carboamination of Alkenes,” J. Am. Chem. Soc. 129, 12948-12949.**
19. T. P. Zabawa, S. R. Chemler* (2007) “Copper(II) Carboxylate Promoted Intramolecular Diamination of Unactivated Alkenes for the Synthesis of Cyclic Vicinal Diamines: Diastereoselectivity and Expanded Substrate Scope” Org. Lett. 9. 2035-2038.
18. E. S. Sherman; P. H. Fuller; D. Kasi; S. R. Chemler,* (2007), “Pyrrolidine and Piperidine Formation Via Copper(II) Carboxylate Promoted Intramolecular Carboamination of Unactivated Olefins: Diastereoselectivity and Mechanism,” J. Org. Chem. 72, 3896-3905.
17. E. Cheng, J. Ni, Y. Yin, C. C. Lin, P. Chang, N. S. James, S. R. Chemler, S. Yeh* (2007), “alpha-Vitamin E Derivative, RRR-alpha-Tocopheryloxybutyric Acid Inhibits the Proliferation of Prostate Cancer Cells,” Asian J. Andrology, 9. 31.
16. S. R. Chemler* and P. H. Fuller (2007) “Heterocycle Synthesis by Copper Facilitated Additions of Amines to Alkenes, Alkynes and Arenes,” invited review, Chemical Society Reviews, 36, 1153-1160.
15. S. R. Chemler and T. P. Zabawa (2006) “Three Carbon-Heteroatom Bonds: Alpha-Heteroatom Substituted Alkanoic Acids and their Ester Derivatives,” Science of Synthesis, Vol. 20a, E. Jacobsen, Ed. Section 20.2.8, “Product Subclass 8: 2-Heteroatom-Substituted Alkanoic Acids,” 483-505.
14. S. R. Chemler and T. P. Zabawa (2006) “Three Carbon-Heteroatom Bonds: Alpha-Heteroatom Substituted Alkanoic Acids and their Ester Derivatives,” Science of Synthesis, Vol. 20b, E. Jacobsen, Ed. Section 20.5.11, “Product Subclass 11: 2-Heteroatom-Substituted Alkanoic Acid Esters,” 1203-1242.
13. T. P. Zabawa, D. Kasi, S. R. Chemler,* (2005) “Copper(II) Acetate Promoted Intramolecular Diamination of Unactivated Olefins,” J. Am. Chem. Soc., 127, 11250-11251.
12. Y. Wu, K. Zu, J. Ni, S. Yeh, D. Kasi, N. S. James, S. R. Chemler and C. Ip* (2004). “Cellular and Molecular Effects of alpha-Tocopheryloxybutyrate: Lessons for the Design of Vitamin E Analog for Cancer Prevention” Anticancer Research, 24, 3795-3802.
11. M. R. Manzoni, T. P. Zabawa, D. Kasi and S. R. Chemler* (2004). “Palladium(II) Catalyzed Intramolecular Aminobromination and Aminochlorination of Olefins,” Organometallics, 5618-5621.
10. E. S. Sherman, S. R. Chemler,* T. B. Tan and O. Gerlits (2004). “Copper(II) Acetate Promoted Oxidative Cyclization of Arylsulfonyl-o-allylanilines,” Org. Lett. 10, 1573-1575.
Prior to UB (PhD and Postdoc)
9. S. R. Chemler, W. R. Roush* (2003). “Stereochemistry of the Allylation and Crotylation Reactions of alpha-Methyl-beta-Hydroxy Aldehydes with Allyl- and Crotyltrifluorosilanes. Synthesis of Anti, Anti-Dipropionate Stereotriads and Stereodivergent Pathways for the Reactions of 2,3-Anti and 2,3-Syn alpha-Methyl-beta-Hydroxy Aldehydes,” J. Org. Chem. 68, 1319-1333.
8. S. R. Chemler, D. Trauner and S. J. Danishefsky* (2001) “The B-Alkyl Suzuki-Miyaura Cross-Coupling Reaction: Development, Mechanistic Study and Applications in Natural Product Synthesis,” Angew. Chem. Int. Ed., 40, 4544-4568.
7. S. R. Chemler and W. R. Roush (2000) “Recent Applications of the Allylation Reaction to the Synthesis of Natural Products” Chap. 11 in Modern Carbonyl Chemistry, J. Otera, Ed., Wiley-VCH: Weinheim.
6. S. R. Chemler, U. Iserloh and S. J. Danishefsky* (2001). “Toward an Enantioselective Synthesis of Phomactin A: Construction of the Oxadecalin Core via a Highly Stereoselective Diels-Alder Reaction,” Org. Lett. 3, 2949-2951.
5. S. R. Chemler and S. J. Danishefsky* (2000). “Transannular Macrocyclization via Intramolecular B-Alkyl Suzuki Reaction,” Org. Lett. 2, 2695-2698.
4. S. R. Chemler, D. S. Coffey and W. R. Roush* (1999). “An Improved Synthesis of the (E,Z)-Dienoate Precursor of (+)-Damavaricin D Via a Vinylogous Horner-Wadsworth-Emmons Reaction,” Tetrahedron Lett. 40, 1.
3. S. R. Chemler and W. R. Roush* (1999). “Stereochemically Divergent Pathways for the Allylation and Crotylation Reactions of Anti- and Syn-beta-Hydroxy-alpha-Methyl Aldehydes with Allyl- and Crotyltrifluorosilanes,” Tetrahedron Lett., 40, 4643-4647.
2. K. A. Scheidt, H. Chen, B. C. Follows, S. R. Chemler, D. S. Coffey and W. R. Roush* (1998). “Tris(dimethylamino)sulfonium Difluorotrimethylsilicate, a Mild Reagent for the Removal of Silicon,” J. Org. Chem. 19, 6436-6437.
1. S. R. Chemler and W. R. Roush* (1998). “Concerning the Synthesis of the Elusive Anti,Anti-Dipropionate Stereotriad via the Crotylation of alpha-Methyl-beta-Hydroxy Aldehydes with (Z)-Crotyltrifluorosilane. Application to the Synthesis of the C(7)-C(16) Segment of Zincophorin,” J. Org. Chem. 63, 3800-3801.