Publications

From the University at Buffalo:

53) Zaheer, W.; McGranahan, C. R.; Ayala, J. R.; Garcia-Pedraza, K.; Carrillo, L. J.; Rothfuss, A. R. M.; Wijethunga, U.; Agbeworvi, G.; Giem, A. R.; Andrews, J. L.; Handy, J. V.; Perez-Beltran, S.; Calderon-Oliver, R.; Ma, L.; Ehrlich, S. N.; Jaye, C.; Weiland, C.; Fischer, D. A.; Watson, D. F.; Banerjee, S. Photocatalytic Hydrogen Evolution Mechanisms Mediated by Stereoactive Lone Pairs of SB2VO5 in Quantum Dot Heterostructures. Chem Catalysis 2023, 100844. DOI:10.1016/j.checat.2023.100844.

52) Rothfuss, A. R. M.; Ayala, J. R.; Handy, J. V.; McGranahan, C. R.; García-Pedraza, K. E.; Banerjee, S.; Watson, D. F. Linker-Assisted Assembly of Ligand-Bridged Cds/MOS2 Heterostructures: Tunable Light-Harvesting Properties and Ligand-Dependent Control of Charge-Transfer Dynamics and Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2023, 15 (33), 39966–39979. DOI:10.1021/acsami.3c06722.

51) Gilbert, A.B.; Crawley, M.R.; Higgins, T.J.; Li, Y.C.; Watson, D.F.; Cook, T.R.; “Exploring the Emergent Redox Chemistry of Pd (II) Nodes with Pendant Ferrocenes: From Precursors, through Building Blocks, to Self-Assemblies” Inorganics. 2023, 11(3), 122. DOI: 10.3390/inorganics11030122

50) Handy, J.V.; Zaheer, W.; Rothfuss, A.R.M.; McGranahan, C.R.; Agbeworvi, G.; Andrews, J.L.; García-Pedraza, K.E.; Ponis, J.D.; Ayala, J.R.; Ding, Y.; Watson, D.F.; Banerjee, S.; “Lone but Not Alone: Precise Positioning of Lone Pairs for the Design of Photocatalytic Architectures” Chem. Mater. 2022, 34, 4, 1439–1458. DOI: 10.1021/acs.chemmater.1c03762

49) McGranahan, C.R. and Watson, D.F.; “Influence of donor-to-acceptor ratio on excited-state electron transfer within covalently tethered CdSe/CdTe quantum dot colloidal heterostructures” J. Chem. Phys. 2022, 156, 054706. DOI: 10.1063/5.0078549

48) McGranahan, C.R.; Wolfe II, G.E.; Falca, A.; Watson, D.F.; “Excited-State Charge Transfer and Extended Charge Separation within Covalently Tethered Type-II CdSe/CdTe Quantum Dot Heterostructures: Colloidal and Multilayered Systems” ACS Appl. Mater. Interf. 2021, 13, 30980-30991. DOI: 10.1021/acsami.1c05653

47) Cho, J.; Suwandaratne, N.S.; Razek, S.; Choi, Y.-H.; Piper, L.F.F.; Watson, D.F.; Banerjee, S.; “Elucidating the Mechanistic Origins of Photocatalytic Hydrogen Evolution Mediated by MoS2/CdS Quantum-Dot Heterostructures” ACS Appl. Mater. Interf. 2020, 12, 43728-73740. DOI: 10.1021/acsami.0c12583

46) Abdel Razek, S.; Popeil, M.R.; Wangoh, L.; Rana, J.; Suwandaratne, N.; Andrews, J.L.; Watson, D.F.; Banerjee, S.; Piper, L.F.J.; “Designing Catalysts for Water Splitting Based on Electronic Structure Considerations” Elec. Struct. 2020, 2, 023001. DOI: 10.1088/2516-1075/ab7d86

45) Wei, X.; Zhao, C.; Hui, H.; Deng, C.; Han, M.; Yu, Z.; Sheng, A.; Lin, J.; Watson, D.F.; Sun, Y-Y.; Thomay, T.; Yang, S.; Jia, Q.; Zhang, S.; Zeng, H.; “Realization of BaZrS3 Chalcogenide Perovskite Thin Films for Optoelectronics” Nano Energy. 2020, 68, 104317. DOI: 10.1016/j.nanoen.2019.104317

44) Chauhan, S.; Sheng, A.; Cho, J.; Razek, S.; Suwandaratne, N.; Sfeir, M.; Piper, L.; Banerjee, S.; Watson, D.F.; “Type-II Heterostructures of α-V2O5 Nanowires Interfaced with Cadmium Chalcogenide Quantum Dots: Programmable Energetic Offsets, Ultrafast Charge Transfer, and Photocatalytic Hydrogen Evolution” J. Chem. Phys2019, 151, 224702. DOI: 10.1063/1.5128148

43) Braham, E.J.; Cho, J; Forlano, K.M.; Watson, D.F.; Arroyave, R.; Banerjee, S. “Machine Learning-Directed Navigation of Synthetic Design Space: A Statistical Learning Approach to Controlling the Synthesis of Perovskite Halide Nanoplatelets in the Quantum-Confined Regime” Chem. Mater. 2019, 31, 3281-3292. DOI: 10.1021/acs.chemmater.9b00212

42) Cho, J.; Sheng, A.; Suwandaratne, N.; Wangoh, L.; Andrews, J.L.; Zhang, P.; Piper, L.F.J.; Watson, D.F.; Banerjee, S. “The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation” Acc. Chem. Res. 2019, 52, 645-655. DOI: 10.1021/acs.accounts.8b00378

41) Andrews, J.L.; Cho, J.; Wangoh, L.; Suwandaratne, N.; Sheng, A.; Chauhan, S.; Nieto, K.; Mohr, A; Kadassery, K.J.; Popeil, M.R.; Thakur, P.K.; Sfeir, M.; Lacy, D.C.; Lee, T.; Zhang, P.; Watson, D.F.; Piper, L.F.J.; Banerjee, S. “Hole extraction by Design in Photocatalytic Architectures Interfacing CdSe Quantum Dots with Topochemically Stabilized Tin Vanadium Oxide” J. Am. Chem. Soc. 2018, 140, 17163-17174. DOI: 10.1021/jacs.8b09924

40) Cho, J.; Jin, H.; Sellers, D.G.; Watson, D.F.; Son, D.H.; Banerjee, S. “Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr3) perovskite nanoplatelets” J. Phys. Chem. C. 2017, 34, 8810-8818. DOI:10.1039/C7TC02194A

39) Huang, H.; Chauhan, S.; Gen, J.; Qin, Y.; Watson, D.F.; Lovell, J.F. “Implantable Tin Porphyrin-PEG Hydrogels with pH-Responsive Fluorescence.” Biomacromolecules 2017, 32, 562-567. DOI:10.1021/acs.biomac.6b01715

38) Pelcher, K.E.; Milleville, C.C.; Wangoh, L.; Cho, J.; Sheng, A.; Chauhan, S.; Sfeir, M.Y.; Piper, L.F.J.; Watson, D.F.; Banerjee, S. “Programming Interfacial Energetic Offsets and Charge Transfer in β-Pb0.33V2O5/Quantum-Dot Heterostructures: Tuning Valence-Band Edges to Overlap with Midgap States.” J. Phys. Chem. C 2016, 120, 28992-29001. DOI:10.1021/acs.jpcc.6b10863

37)  Rivera-Gonzalez, N.;Chauhan, S; Watson, D.F. “Aminoalkanoic Acids as Alternatives to Mercaptoalkanoic Acids for the Linker-Assisted Attachment of Quantum Dots to TiO2.” Langmuir 2016, 32, 20466-20475. DOI: 10.1021/acs.langmuir.6b02704

36)  Chauhan, S; Watson, D.F. “Photoinduced Electron Transfer from Quantum Dots to TiO2: Elucidating the Involvement of Excitonic and Surface States.” Phys. Chem. Chem. Phys. 2016, 18, 20466-20475. DOI: 10.1039/C6CP03813A

35)  Perera, S,; Hui, H.; Zhao, C.; Xue, H.; Sun, F.; Deng, C.; Gross, N.; Milleville, C.; Xu, X.; Watson, D.F.; Weinstein, B.; Sun, Y.-Y.; Zhang, S.; Zeng, H. “Chalcogenide Perovskites: An Emerging Class of Ionic Semiconductors.” Nano Energy 2016, 22, 129-135. DOI: 10.1016/j.nanoen.2016.02.020

34)  Milleville, C.C.; Pelcher, K.E.; Sfeir, M.Y.; Banerjee, S.; Watson, D.F. “Directional Charge Transfer Mediated by Mid-Gap States: A Transient Absorption Spectroscopy Study of CdSe Quantum Dot/β-Pb0.33V2O5 Heterostructures.” J. Phys. Chem. C 2016, 120, 5221-5232. DOI: 10.1021/acs.jpcc.6b00231

33)  Kryman, M.W.; Nasca, J.N.; Watson, D.F.; Detty, M.R. “Selenorhodamine Dye-Sensitized Solar Cells: Influence of Structure and Surface-Anchoring Mode on Aggregation, Persistence, and Photoelectrochemical Performance.” Langmuir 2016, 32, 1521-1532. DOI:10.1021/acs.langmuir.5b04275

32)  Sellers, D.G.; Button, A.A.; Nasca, J.N.; Wolfe II, Guy E.; Chauhan, S.; Watson, D.F. “Excited-State Charge Transfer within Covalently-Linked Quantum Dot Heterostructures.” J. Phys. Chem. C 2015, 119, 27737-27748 . DOI:10.1021/acs.jpccc.5b07504

31) Pelcher, K.E.; Millevillle, C.C.; Wangoh, L.; Chauhan, S.; Crawley, M.R.; Marley, P.M.; Piper, L.F.J.; Watson, D.F.; Banerjee, S. “Integrating β-Pb0.33V2O5 Nanowires with CdSe Quantum Dots: Toward Nanoscale Heterostructures with Tunable Interfacial Energetic Offsets for Charge Transfer” Chem. Mater. 2015, 27, 2468-2479. DOI:10.1021/cm504574h

30) Kern, M.E.; Watson, D.F. “Linker-Assisted Attachment of CdSe Quantum Dots to TiO2: Time- and Concentration-Dependent Adsorption, Agglomeration, and Sensitized Photocurrent.” Langmuir 2014, 30, 13293-13300. DOI:10.1021/la503211k

29)  Sabatini, R.P.; Eckenhoff, W.T.; Orchard, A.; Liwosz, K.R.; Detty, M.R.; Watson, D.F.; McCamant, D.W.; Eisenberg, R. “From Seconds to Femtoseconds:  Solar Hydrogen Production and Transient Absorption of Chalcogenorhodamine Dyes.” J. Am. Chem. Soc. 2014, 136, 7740-7750.DOI:10.1021/ja503053s

28) Jarzembska, K.N.; Chen, Y.; Nasca, J.N.; Trzop, E.; Watson, D.F.; and Coppens, P. “Relating Structure and Photoelectrochemcial Properties: Electron Injection by Structurally and Theoretically Characterized Transition Metal-Doped Phenanthroline-Polyoxotitanate Nanoparticles.” Phys. Chem. Chem. Phys. 2014, 16, 15792-15795. DOI:10.1039/C4CP02509A

27) Kern, M.E.; Watson, D.F. “Influence of Dispersion Forces and Ordering on the Compositions of Mixed Monolayers of Alkanoic Acids on Nanocrystalline TiO2 Films.” Langmuir 2013, 29, 13797-13807. DOI:10.1021/la4030519

26) Coughlin, K. M., Nevins, J. S., Watson, D. F. “Aqueous-Phase Linker-Assisted Attachment of Cysteinate(2-)-capped CdSe Quantum Dots to TiO2 for Quantum Dot-Sensitized Solar Cells.” Appl. Mater. Interfaces 2013, 5, 8649-8654. DOI:10.1021/am402219e

25) Bedics, M. A.; Mulhern, K. R.; Watson, D. F.; Detty, M. R. “Synthesis and Photoelectrochemical Performance of Chalcogenopyrylium Monomethine Dyes Bearing Phospohnate/Phosphonic Acid Substituents.” J. Org. Chem. 2013, 78, 8885-8891.  DOI:10.1021/jo401280s

24) Mulhern, K. R.; Detty, M. R.; Watson, D. F. “Effects of Surface-anchoring Mode and Aggregation State on Electron Injection from Chalcogenorhodamine Dyes to Titanium Dioxide.” J. Photochem. Photobiol. A Chem. 2013, 264, 18-25. DOI:10.1016/j.photochem.2013.04.028

23) Stewart, D.T.R.; Noguera-Oviedo, K.; Lee, V.; Banerjee, S.; Watson, D.F.; Aga, D.S.  “Quantum Dots Exhibit Less Bioaccumulation than Free Cadmium and Selenium in the Earthworm Eisenia andrei.” Env. Toxicol. Chem. 2013, 32, 1288-1294. DOI:10.1002/etc.2182

22) Kern, M. E.; Watson, D. F.  “Influence of Solvation and the Persistence of Adsorbed Linkers on the Attachment of CdSe Quantum Dots to TiO2 via Linker-Assisted Assembly.”  Langmuir 2012, 28, 15598-15605. DOI:10.1021/la303504u

21) Sellers, D. G.; Watson, D. F. “Probing the Energetic Distribution of Injected Electrons at Quantum Dot-Linker-TiO2 Interfaces.” J. Phys. Chem. C. 2012, 116, 19215-19224. DOI:10.1021/jp307196z

20) Mulhern, K. R.; Orchard, A.; Watson, D. F.; Detty, M. R.  “Influence of Surface-Attachment Functionality on the Aggregation, Persistance, and Electron-Transfer Reactivity of Chalcogenorhodamine Dyes on TiO2.” Langmuir 2012, 28, 7071-7082. DOI:10.1021/la300668k

19) Navarro, D.A.; Depner, S.W.; Watson, D.F.; Aga, D.S.; Banerjee, S.B. “Persistence Behavior and Stabilization of Hydrophobically Coated HfO2, ZrO2 and HfxZr1-xO2 Nanoparticles with Natural Organic Matter Reveal Differences Dependent on Crystal Structure.” J. Hazard. Mater. 2011, 196, 302-310. DOI:10.1016/j.jhazmat.2011.09.028

18) Cheng, K.-C.; Law, W.-C.; Yong, K.-T.; Nevins, J.S.; Watson, D.F.; Ho, H.-P.; Prasad, P.N.  “Synthesis of Near-Infrared Silver-Indium-Sulfide (AgInS2) Quantum Dots as Heavy-Metal Free Photosensitizer for Solar Cell Applications.” Chem. Phys. Lett. 2011, 515, 254-257. DOI:10.1016/j.cplett.2011.09.027

17) Nevins, J. S.; Coughlin, K. C.; Watson, D. F. “Attachment of CdSe Nanoparticles to TiO2 via Aqueous Linker-Assisted Assembly: Influence of Molecular Linkers on Electronic Properties and Interfacial Electron Transfer.” ACS Appl. Mater. Interfaces 2011, 3, 4242-4253. DOI:10.1021/am200900c

16) Baker, J. S.; Nevins, J. S.; Coughlin, K. C.; Colón, L. A.; Watson, D. F.  “Influence of Complex-Formation Equilibria on the Temporal Persistence of Cysteinate-Functionalized CdSe Nanocrytals in Water.” Chem. Mater. 2011, 23, 3546-3555. DOI:10.1021/cm2013347

15) Navarro, D.A.; Banerjee, S.; Watson, D. F.; Aga, D.S. “Differences in Soil Mobility and Degradability between Water-Dispersible CdSe and CdSe/ZnS Quantum Dots.” Env. Sci. Tech. 2011, 45, 6343-6349. DOI:10.1021/es201010f

14) Celiz, M.D.; Colón, L.A.; Watson, D. F.; Aga, D.S. “A Study on the effects of Humic and Fulvic Acids on Quantum Dot Nanoparticles using Capillary Electrophoresis with Laser Induced Fluorescence Detection.” Env. Sci. Tech. 2011, 45, 2917-2924. DOI: 10.1021/es1031097

13) Mulhern, K. R.; Detty, M. R.; Watson, D. F. “Aggregation-Induced Increase of the Quantum Yield of Electron Injection from Chalcogenorhodamine Dyes to TiO2.” J. Phys. Chem. C. 2011, 115, 6010-6018. DOI:10.1021/jp111438x

12) Watson, D.F. “Linker-Assisted Assembly and Interfacial Electron-Transfer Reactivity of Quantum Dot-Substrate Architectures.” J. Phys. Chem. Lett. 2010, 1, 2299-2309. DOI:10.1021/jz100571u

11) Navarro, D.A.G.; Banerjee, S.; Aga, D.S.; Watson, D.F. “Partitioning of Hydrophobic CdSe Quantum Dots into Aqueous Dispersions of Humic Substances: Influence of Capping-Group Functionality on the Phase-Transfer Mechanism.” J. Coll. Interface Sci. 2010, 348, 119-128. DOI:10.1016/j.jcis.2010.04.021

10) Smith, A.R.; Watson, D.F. “Photochemically Triggered Assembly of Composite Nanomaterials through the Photodimerization of Adsorbed Anthracene Derivatives.”  Chem. Mater. 2011, 22, 294-304. DOI: 10.1021/cm901821p

9) Dibbell, R.S.; Youker, D. G.; Watson, D.F. “Excited-State Electron Transfer from CdS Quantum Dots to TiO2 Nanoparticles via Molecular Linkers with Phenylene Bridges.”  J. Phys. Chem. C 2009, 113, 18643-18651. DOI: 10.1021/jp9079469

8) Mann, J. R.; Nevins, J. S.; Soja, G.R.; Wells, D. D.; Levy, S. C.; Marsh, D. A.; Watson, D.F.  “Influence of Solvation and the Structure of Adsorbates on the Kinetics and Mechanism of Dimerization-Induced Compositional Changes of Mixed Monolayers on TiO2.” Langmuir 2009, 25,12217-12228. DOI:10.1021/la901740d

7) Soja, G.R.; Watson, D.F. “TiO2-Catalyzed Photodegradation ofPorphyrins: Mechanistic Studies and Application in Monolayer Photolithography.” Langmuir 2009, 25, 5398-5403. DOI:10.1021/la804256f

6) Dibbell, R.S.; Watson, D.F. “Distance-Dependent Electron Transfer in Tethered Assemblies of CdS Quantum Dots and TiO2Nanoparticles.” J. Phys. Chem. C 2009, 113, 3139-3149. DOI:10.1021/jp809269m

5) Navarro, D.A.G.; Watson, D.F.; Aga, D.S.; Banerjee, S. “Natural Organic Matter-Mediated Phase Transfer of Quantum Dots in the Aquatic Environment.” Env. Sci. Tech. 2009, 43, 677-682. DOI:10.1021/es8017623

4) Mann, J. R.; Gannon, M. K.; Fitzgibbons, T. C.; Detty, M. R.; Watson, D. F. “Optimizing the Photocurrent Efficiency of Dye-Sensitized Solar Cells through the Controlled Aggregation of Chalcogenoxanthylium Dyes on Nanocrystalline Titania Films.” J. Phys. Chem. C 2008, 112, 13057-13061. DOI:10.1021/jp803990b

3) Soja, G. R.; Mann, J.R.;  Watson, D.F. “Temporal Evolution of the Composition of Mixed Monolayers on TiO2 Surfaces: Evidence for a Dimerization-Induced Chelate Effect.” Langmuir 2008, 24, 5249-5252. DOI:10.1021/la800731p

2) Mann, J.R.;  Watson, D.F. “Adsorption of CdSe Nanoparticles to Thiolated TiO2 Surfaces:  Influence of Intralayer Disulfide Formation on CdSe Surface Coverage.” Langmuir 2008, 23, 10924-10928. DOI:10.1021/la702127t

1) Dibbell, R.S.; Soja, G.R.; Hoth, R.M.; Watson, D.F. “Photocatalytic Patterning of Monolayers for the Site-Selective Deposition of Quantum Dots onto TiO2 Surfaces.” Langmuir 2007, 23, 3432-3439. DOI:10.1021/la063161a

David Watson’s publications from previous institutions:

13) Hasselman, G.M.; Watson, D.F.; Stromberg, J.R.; Bocian, D.F.;Holten, D.; Lindsey, J.S.; Meyer, G.J. “Theoretical Solar-to-Electrical Energy-Conversion Efficiencies of Perylene-Porphyrin Light-Harvesting Arrays.” J. Phys. Chem. B 2006, 110, 25430-25440.

12) Watson, D.F.; Meyer, G.J. “Electron Injection at Dye-Sensitized Semiconductor Electrodes.” Annu. Rev. Phys. Chem. 2005, 56, 119-156.

11) Watson, D.F.; Meyer, G.J. “Cation Effects in Nanocrystalline Solar Cells.” Coord. Chem. Rev. 2004, 248, 1391-1406.

10) Watson, D.F.; Marton, A.; Stux, A.M.; Meyer, G.J. “Influence of Surface Protonation on the Sensitization Efficiency of Porphyrin-Derivatized TiO2.” J. Phys. Chem. B 2004, 108, 11680-11688.

9) Watson, D.F.; Tan, H.S.; Schreiber, E.; Mordas, C.J.; Bocarsly, A.B. “Femtosecond Pump-Probe Spectroscopy of TrinuclearTransition Metal Mixed-Valence Complexes.” J. Phys. Chem. A 2004, 108, 3261-3267.

8) Watson, D.F.; Marton, A.; Stux, A.M.; Meyer, G.J. “Insights into Dye-Sensitization of Planar TiO2: Evidence for Involvement of a Protonated Surface State.” J. Phys. Chem. B 2003, 107, 10971-10973.

7) Pfennig, B.W.; Mordas, C.J.; McCloskey, A.; Lockard, J.V.; Salmon, P.M.; Cohen, J.L.; Watson, D.F.; Bocarsly, A.B. “Excited-State Electronic Coupling and Photoinduced Multiple Electron Transfer in Two Related Ligand-Bridged Hexanuclear Mixed-Valence Compounds.” Inorg. Chem. 2002, 41, 4389-4395.

6) Watson, D.F.; Willson, J.T.; Bocarsly, A.B. “Photochemical Image Generation in a Cyanogel System Synthesized from Tetrachloropalladate(II) and a Trimetallic Mixed Valence Complex: A Consideration of Photochemical and Dark Mechanistic Pathways of Prussian Blue Formation.” Inorg. Chem. 2002, 41, 2408-2416.

5) Watson, D.F.; Bocarsly, A.B. “The Effects of Electronic Coupling and Solvent Broadening on the Intervalent Electron Transfer of a Centrosymmetric Mixed-Valence Complex.” Coord. Chem. Rev. 2001, 211, 177-194.

4) Watson, D.F.; Bocarsly, A.B. “Interfacial Photoannealing: The Light-Driven Alteration of the Surface-Binding Geometry of a TrimetallicMixed-Valence Complex Capable of Multielectron Charge Transfer on Colloidal TiO2.” J. Phys. Chem. B 2000, 104, 10940-10948.

3) Hennessy, M.H.; Soos, Z.G.; Watson, D.F.; Bocarsly, A.B. “Raman Excitation Profiles with Self-Consistent Excited-State Displacements.” J. Phys. Chem. B 2000, 104, 10909-10914.

2) Pfennig, B.W.; Lockard, J.V.; Cohen, J.L.; Watson, D.F.; Ho, D.M.; Bocarsly, A.B. “Synthesis, Characterization, and Photochemistry of a Dinuclear Cyanide-Bridged Iron(II)-Platinum(IV) Mixed-Valence Compound and Its Implications for the Corresponding Iron(II)-Platinum(IV)-Iron(II) Complex.” Inorg. Chem. 1999, 38, 2941-2946.

1) Belanger, S.; Hupp, J.T.; Stern, C.L.; Slone, R.V.; Watson, D.F.; Carrell, T.M. “Thin-Film Molecular Materials Based on Tetrametric Squares: Nanoscale Porosity and Size Selective Guest Transport Characteristics.” J. Am. Chem. Soc. 1999, 121, 557-563.