
Should Programming Languages Hang On English?:
An argument for Culturally Sustaining Programming
Ryan Enser enser@buffalo.edu

Background
The most popular programming languages used around the world 
are all constructed from the natural language of English, but 
English is spoken natively by only about 400,000,000 people, less 
than 10% of the global population (Lingoda, 2021; TIOBE Software 
BV, 2021). English is even the standard language of supporting 
materials and tools for those learning and working in programming 
languages further exacerbating the English language barrier to 
accessing programming languages (Ruby & David, 2016).

Even though English dominates computer programming 
languages, it is not because its characteristics make it better suited 
for constructing them. In fact, natural languages are not better or 
worse than any other in their characteristics or their usefulness as 
communicative tools. As the field of linguistics developed over the 
last 100 years it has abandoned its raciolinguistic prejudice that 
deemed some languages, especially European languages, 
superior to others (Dixon, 2016; Flores & Rosa, 2015). This 
breakthrough produced the current view within linguistics that all 
languages are similar in the value of their characteristics and in 
their utility for communication.

Comparison of English speakers
and all other language speakers

Sociolinguistically, the English language has been used as a tool 
for empowering some and disenfranchising others, so it is not a 
stretch to propose that this same phenomenon is happening with 
programming languages as well. Nelson Flores has written 
extensively on raciolinguistic ideologies that exclude minoritized 
Americans from educational opportunities based on racial and 
linguistic variation (Flores, 2020; Flores & Rosa, 2015). How much 
more could raciolinguistic ideologies be responsible for the 
exclusion of international participants in software engineering 
based on even greater racial and linguistic variation? Within 
schools, efforts to decenter the dominant English variety in the 
United States have been met with fierce resistance from 
educators, as well (Metz, 2017). How much more resistance could 
there be from programmers to the effort of decentering English 
from its dominant position in programming languages?

Culturally Sustaining Programming
To empower native language programmers to develop their own 
programming languages, culturally sustaining pedagogies, an 
approach from the field of education principally developed by 
Django Paris (2017), could be adapted for software engineering as 
culturally sustaining programming. Culturally sustaining 
pedagogies flows from the intersection of education and cultural 
pluralism and can be adapted as culturally sustaining 
programming at the intersection of software development and 
cultural pluralism. 

References
1. Dixon, R.M. (2016). Are some languages better than others? Oxford 
University Press.
2. Flores, N. (2020). From academic language to language architecture: 
Challenging raciolinguistic ideologies in research and practice. Theory 
into practice, 59(1), 22-31.
3. Flores, N., & Rosa, J. (2015). Undoing Appropriateness: Raciolinguistic
Ideologies and Language Diversity in Education. Harvard educational 
review, 85(2), 149-171.
4. Lingoda. (2021). What are the main English speaking countries? 
Retrieved November 29, 2021 from 
https://www.lingoda.com/en/content/english-speaking-countries/
5. Metz, M. (2017). Addressing English teachers’ concerns about 
decentering Standard English. English Teaching: Practice & Critique, 16, 
00-00.
6. Paris, D., & Alim, H. S. (2017). Culturally sustaining pedagogies: 
Teaching and learning for justice in a changing world. Teachers College 
Press.
7. Ruby, I., & David, S. (2016). Natural-Language Neutrality in 
Programming Languages: Bridging the Knowledge Divide in Software 
Engineering. In P. Zaphiris & A. Ioannou, Learning and Collaboration 
Technologies Cham.
8. TIOBE Software BV. (2021). TIOBE index for November 2021. 
Retrieved November 29, 2021 from https://www.tiobe.com/tiobe-index/
9. U.S. Department of Commerce. (2021). Select USA: Software and 
Information Technology Spotlight.

Department of Learning and Instruction
Graduate School of Education

ed.buffalo.edu

Example of English-speaking country’s 
(United States) disproportionate share of 
the information technology market

Affordances
Culturally sustaining programming affords many benefits for 
languages and cultures traditionally excluded from programming. 
Prospective programmers would be able to bypass the high barrier 
of learning English to access programming languages, which 
would surely open the field of programming to many more 
aspirants. These native language programmers would then 
develop new native language software engineering industries that 
would economically and materially benefit their linguistic group. 
Additionally, programming languages derived from natural 
languages other than English would become a linguistic and 
cultural asset of the linguistic group. For example, an Arabic-
derived programming language and the products created by that 
language would surely strengthen the linguistic and cultural 
identity of Arab speakers. Surely there are even more culturally 
sustaining programming affordances beyond these stated here, as 
well.

Exclusion
Because English is as useful as other languages for 
communicative purposes, its exclusive role as the source 
language for nearly all programming languages can best be 
explained by historical and sociolinguistic factors. Historically, 
software engineering, which programs computers with 
programming languages, largely began and continues to be 
conducted in English-speaking parts of the world. To help illustrate 
this, North America only contains about 6.5% of the global 
population, but commands 40% of the share of the information 
technology market (U.S. Department of Commerce, 2021). The 
historical narrative of how software engineering advanced in 
English-speaking parts of the world is a useful model for how 
software engineering could be developed in other linguistic 
contexts, but it should not be used to limit software engineering to 
English-speaking parts of the world.

In a similar way to how culturally sustaining pedagogies views the 
plurality of cultures and languages of students as an asset, 
culturally sustaining programming views the plurality of cultures 
and languages of programmers as an asset, as well. This additive 
model empowers native language software engineers to derive 
programming languages from their own native languages.

Conclusion
The linguistic hegemony of English as the sole source language 
for all popular programming languages has historically and 
sociolinguistically excluded those whose native languages are not 
English from software engineering. The approach of culturally 
sustaining programming provides many affordances for 
prospective native language programmers and the linguistic 
populations that they represent.


