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Abstract
Processing speech that is non-canonical (i.e., child-produced speech) and/or presented in background noise can pose challenges
for listeners. We investigated how listening to child-produced speech affects young adults’ word recognition under varying
noise conditions. Participants (n = 121) completed a two-picture eye-tracking task in one of three conditions: no background
noise, pink background noise, and real-world background noise from LENA recordings. Participants heard a child or adult
(Speaker-Age) direct attention to a generic (e.g., keys) or child-specific (e.g., potty; Item-Type) item. We examined the effect
of Speaker-Age and Item-Type on participants’ looking time. In no background noise, increases in target looking were high,
with greater increases when adults produced generic items. Both pink noise and real-world noise increased task difficulty,
but patterns of results varied as a function of speaker gender. For female speech, background noise resulted in an effect of
Speaker-Age, with participants increasing their looking time more for adult relative to child speech. The type of background
noise did not influence this pattern. For male speech, there was an effect of Speaker-Age in the opposite direction, with
participants increasing their looking time more for child relative to adult speech. For male speech, real-world background
noise resulted in higher increases in target looking for child-specific items. Together, results suggest that child-produced
speech may be more difficult to process than female-adult produced speech in noise, and that listeners can use background
noise to predict who will speak and what they might speak about under more challenging conditions, such as processing male
speech.

Keywords Child speech · Word recognition ·Word prediction · Background noise · Eye-tracking

Introduction

In everyday life, we hear speech from different people, and
since each person sounds different, speech perception can
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be challenging. For example, the exact properties of speech
vary as a function of the speaker’s age, sex, and language
background (Boland et al., 2016). Environmental conditions,
such as background noise, further complicate speech per-
ception, leading to increased effort and potential errors in
comprehension (Borghini & Hazan, 2020; Pichora-Fuller et
al., 2016). One strategy listeners might use to overcome chal-
lenges posed by processing speech from different individuals
in potentially noisy conditions is to engage in predictive pro-
cessing, relying on their expectations about what specific
speakers might say. Here, we are specifically interested in
how young adults process speech from 5-year-old children
(hereafter termed child-produced speech), whose speech has
been shown to be less canonical and more challenging to
comprehend (e.g. Yu et al. (2023)). We ask whether listeners
use top-down information to facilitate or support processing
of child-produced speech, and if so, what kinds of infor-
mation listeners use. Specifically, we manipulate the type of
items (child-specific vs. generic) and the background noise to
test whether listeners use expectations about who is speaking
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andwhat theymight be speaking about. By varying these fac-
tors, this set of studies advances our understanding of how
listeners process non-canonical speech and how they may
integrate expectations about speakers and background noise
to aid in speech processing.

Processing non-canonical speech

Previous research has found that non-canonical speech influ-
ences speech processing. A type of non-canonical speech
that has received more attention is accented speech. While
the exact definition of accented speech varies and can range
from unfamiliar regional varieties of the native language
to foreign-accented speech, processing accented speech
appears to impair spoken word recognition (e.g., Lawson et
al., 2003; Porretta et al., 2016). For example, Porretta et al.
(2016) showed that looks to the target object in a visual-world
eye-tracking paradigm decreased as the degree of foreign
accentedness increased, suggesting that a stronger perceived
foreign accent negatively impacted comprehension. Even
regional accents can lead to processing costs, as for example,
Canadian English speakers listening to British English were
unable to rely on contrastive prosody to carry out a set of
directions (Arnhold et al., 2020).

Here, we ask whether listening to child-produced speech
also leads to processing difficulties. Children produce less
canonical pronunciations of words, in part due to shorter
vocal tracts and vocal folds, which result in a broader range
of vowel durations compared to older children and adults,
along with greater spectral and suprasegmental variations.
Additionally, they exhibit more extensive variability in for-
mant positions and fundamental frequencies within their
speech signal (Benzeghiba et al., 2007), resulting in a gen-
erally higher pitch and longer segmental duration (Lee et
al., 1999; Tingley & Allen, 1975). In addition, children
often make predictable phonological errors (e.g. reduction
of consonant clusters, ‘spaghetti’ becomes ‘paghetti’). Taken
together, children’s developing articulatory and phonological
skills result in variability and deviation in their pronuncia-
tion, pitch, and articulation.

Studies that have investigated adults’ processing of child-
produced speech have found this speech to be more chal-
lenging. For example, Creel and Jimenez (2012) has shown
that adults exhibit more difficulty learning to identify and
recognize children’s voices. Similarly, Cooper et al. (2020)
also found that adults exhibited difficulty even distinguishing
between children’s voices, and were slower and less accu-
rate at learning to identify individual child talkers relative to
adult talkers. Children’s voices also appear to be harder to
understand. In a recent study, adults were asked to transcribe
single-word utterances from 2.5, 4, and 5.5-year-old children

and adults. Adults were significantly more accurate at tran-
scribing adult-produced speech relative to child-produced
speech, though transcription accuracy improved as child age
increased (Yu et al., 2023). Nonetheless, transcription accu-
racy for single-word utterances produced by 5.5-year-olds
was 78%, compared to 87% accuracy for adult speech, sug-
gesting that even 5-year-old children are more challenging
to understand than adults.

Effects of background noise

In addition to non-canonical speech potentially being more
challenging to process, everyday environments often include
background noise. Our daily experiences with language are
often in less-than-ideal conditions due to potentially imper-
fect or degraded signals due to background noise (Borghini
and Hazan (2020), see also Beaman (2005)), which in turn
can make speech perception more effortful (Pichora-Fuller
et al., 2016; Zekveld et al., 2014). For example, Strauß et al.
(2022) found that increased background noise and decreased
speech quality reduced perceptual clarity and led to greater
uncertainty. Similarly, speed of word recognition was found
to be slower and more effortful with both background noise
and increased echoing (Picou et al., 2016).

Many of the studies described so far used more artifi-
cial background noise, such as pink or white noise, to test
its effects on speech perception. However, while listeners
in the real world do occasionally encounter these types of
noises, they also typically encounter other kinds of back-
ground noises. A type of background noise commonly used
is termed single or multi-talker babble, which consists of the
target sound or sentence overlapped with sentences from one
or multiple other talkers. While all noise seems to make lis-
tening comprehension more challenging, background noise
that also contains speech appears to be the most challeng-
ing, possibly because it provides another stream that listeners
could attend to (Eranović, 2022). Increasing the number of
talkers in the background noise also further increases task
difficulty (e.g Bronkhorst & Plomp 1992; Van Engen &
Bradlow, 2007). Other types of more natural background
noises have also been examined. For example, subway and
vacuum noises (Lee et al., 2015) were found to affect par-
ticipants’ ability to recognize words, though the individual
effects varied. In sum, different types of background noise,
whether artificial or naturally occurring,make speechpercep-
tion more challenging, and background noise that contains
speech is particularly difficult.

Background noise could be additionally challenging
under already difficult processing conditions. For exam-
ple, research suggests that the intelligibility of non-native
speech declines more than native speech with the addition
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of different types of background noise, such as multi-talker
babble (Rogers et al., 2006), speech-shaped noise (Bent &
Atagi, 2015; Van Wijngaarden et al., 2002) and cafeteria
noise (Munro, 1998). Thus, background noise could make
processing child-produced speech even more challenging.

The role of prediction

How might listeners overcome challenges posed by process-
ing in these difficult contexts? One possibility is that listeners
can rely on their expectations about upcoming speech. Pre-
vious research has found that listeners predict upcoming
language as they encounter it, which can speed up process-
ing when their predictions are correct (Pickering & Gambi,
2018). For example, highly predictive adjectives lead to
preactivation of nouns (e.g., ‘soy’ preactivates ‘sauce, and
‘iced’ preactivates ‘tea’) (Fruchter et al., 2015). Furthermore,
recognition of non-canonical word forms (e.g., phonological
reductions) improves when they are preceded by a strongly
supportive discourse context (Brouwer et al., 2013), sug-
gesting that context can help listeners overcome challenging
listening conditions. This has been found to extend to pro-
cessing speech in noisy in addition to quiet conditions (Feest
et al., 2019). In fact, prediction becomes especially helpful
when listeners need to compensate for noisy input (Pickering
&Garrod, 2007). Thus, listeners engage in prediction during
speech processing, and can use it to optimize processing the
speech signal, particularly in more challenging conditions.

In addition to predicting based on linguistic content, lis-
teners can also predict based on non-linguistic properties,
such as background knowledge or speaker intention. For
example, Arnold et al. (2007) found that listeners looked
at novel items more than familiar items when speakers pro-
duced disfluencies (e.g., ‘uh’; see also Bosker et al. (2014)).
When disfluencies are produced by non-native speakers,
however, listeners no longer interpret the disfluency to sug-
gest that an unfamiliar object is being labeled (Bosker et
al., 2014), suggesting that listeners incorporate the speaker’s
perceived knowledge during speech processing. These types
of predictions extend to speech produced by children. For
example, adults who heard a child speaker say “every night
I drink some wine before I go to bed” showed a larger
N400 compared to when an adult produced the same sen-
tence, indicating a mismatch in the listener’s expectations
about upcoming words based on speaker (Van Berkum et
al., 2008). Thus, listeners may have expectations about what
types of words children will produce. Specifically for speech
by or about children, previous research suggests that some
words (e.g. potty, pacifier) are more associated with babies
and children than others (e.g., car, keys; Perry et al. (2015)).
If child-produced speech is more difficult to process, listen-
ers may be aided by hearing children produce words that are
associated with children. Recent modeling efforts support

this idea, suggesting that adults engage in “child-directed lis-
tening”, listening with specific expectations regarding what
children are likely to say and child-specific expectations
about child pronunciations (Meylan et al., 2023),which allow
them to interpret this otherwise noisy signal.

Additionally, it is possible that some types of background
noise could actually be helpful for predicting in challenging
listening environments. Gregg and Samuel (2009) suggest
that auditory representations contain some semantic content
(e.g., knowledge that the auditory input contained a dog bark-
ing and not a bell ringing), and these auditory representations
could lead listeners to have expectations about the content
of speech as well. Certain types of background noise may
be particularly indicative of the presence of children (and
therefore possibly discussion of child-specific things), which
could allow listeners to switch to “child-directed listening”
(Meylan et al., 2023), therefore aiding processing. Here,
we investigate this possibility, testing speech processing in
silence and in two types of background noise: speech-shaped
pink noise and real-world background noise, asking whether
different types of background noise differently impact speech
processing.

Current study

Taken together, processing non-canonical speech canbe chal-
lenging for listeners, but listeners’ expectations or predic-
tions about upcoming information could help themovercome
these challenges. Here, we aim to specifically test how young
adults process child-produced speech, investigating the role
of prediction by manipulating the child-specificity of the
target items, and the role of background noise by adding
artificial (pink noise) and real-world (noise from children’s
homes) background noise. We additionally collected self-
reported data on participants’ experiences interacting with
children, as prior experience with specific types of speech
could improve comprehension (e.g., Yu et al., 2023; Bradlow
&Bent 2008).We tested participants’word recognition using
a two-picture VisualWorld paradigm.We used a simple two-
picture task so we could maximally compare the results with
developmental populations in the future. We hypothesized
that participants would be slower in looking and increase
their target looking less overall when sentences were pro-
duced by a child speaker relative to an adult speaker, but that
this effect may be less pronounced for child-specific words
because child-specific items produced by childrenmay facili-
tate prediction. Regarding the influence of background noise,
we predict that the addition of pink background noise would
increase the task difficulty overall, and that while real-world
background noise may also be challenging for listeners, this
type of noise may prime listeners to the presence of children,
and thus the cost of processing child-produced speech may
be reduced.
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All experiments were preregistered on OSF: https://osf.io/
ewphv/registrations.

Experiment 1

In Experiment 1, we tested adults’ processing of adult-
produced and child-produced speech in quiet, without any
background noise. This serves as a baseline condition to test
whether child-produced speech is more difficult to process.

Method

Participants

Participants were 41 monolingual English speakers (mean
age = 21, SD = 1.19). Participants self-disclosed their race
and ethnicity: 21 identified as White, five as Asian, 12 as
Black or African American, and three identified as Other; 39
identified as not Hispanic or Latino, and 2 were unknown or
wished not to report. Theywere recruited from theUniversity
Subject Pool and received course credit for participation. A
power analysis prior to data collection (see preregistration)
determined that this sample size was sufficient to achieve
.95 power with an estimated effect size of f = 0.25 and was
consistent with previous research. To verify that they were
monolingual, participants self-rated their proficiency in other
languages on a ten-point scale, and none of them self-rated
their proficiency in a language other than English as above a
6 (a criterion used to identify bilingual participants; Poepsel
and Weiss (2016)). Informed consent was obtained from all
participants prior to participation; all procedures were per-
formed in compliance with the Declaration of Helsinki.

Stimuli

Stimuli were comprised of images (e.g., ball) and sentences
labeling those images (e.g., “Look at the ball”). All stimuli
are available on OSF: https://osf.io/ewphv/

Visual stimuli
The visual stimuli consisted of 24 images. Half of the

images were selected to have high child-specificity ratings
(hereafter child-specific items) and the other half had low
child-specificity ratings (hereafter generic items), as deter-
mined byBabiness ratings (see Perry et al. (2015); e.g., bottle
and tummy are highly child-specific, fork and horse are
generic; see Table 1). On each trial, two images were dis-
played, one child-specific and one generic. Each pair of
images was yoked, such that they were always presented
together. This allowed us to control for the effects of the
distractor image on looking at the target image across trials.
Images were edited in Photoshop and superimposed on a 500
x 500 pixel gray background.

Auditory stimuli
Auditory stimuli consisted of sentences labeling the target

object embedded in carrier phrases directing participants to
look at one of the images. The carrier phrases were “Look at
the X”, “Can you find the X?”, “Where is the X?”, and “Do
you see the X?” (see Bergelson and Swingley (2012)). The
sentences were recorded from two parent–child pairs com-
prised of a same sex 5-year-old child and an adult (as at this
age, transcription accuracy exceeds 50% but is still lower
than accuracy for adult speech; Yu et al. (2023)). Specifi-
cally, one pair was a 5-year-old daughter and her mother,
and the other pair was a 5-year-old son and his father. We
recorded parent–child pairs to maximize the similarity of

Table 1 Characteristics of
stimuli used in experiment. For
both child-specific (left) and
generic (right), the word,
frequency rating, babiness
rating, and proportion of
30-month-olds producing the
word, from Perry et al. (2015)

Child-specific Generic
Word Frequency Babiness 30months% Word Frequency Babiness 30months%

ball 1.55 6.00 100.0 zipper 0.60 2.70 80.00

bottle 1.08 9.60 97.5 glasses 1.59 1.10 81.30

block 0.98 4.47 92.5 horse 1.79 2.00 97.50

crayon 0.47 7.50 95.0 vacuum 0.96 2.00 83.80

kitty 1.10 4.10 97.5 fork 0.30 1.70 92.50

blanket 1.20 8.91 97.5 beads 0.47 2.63 48.80

balloon 0.55 6.54 100.0 hammer 0.86 4.90 76.30

diaper 1.11 6.91 96.3 chair 1.77 4.50 95.00

doll 0.94 7.13 90.0 bench 0.89 2.00 42.50

tummy 0.47 7.16 96.3 brush 1.08 2.30 92.50

cheerios 0.30 6.66 82.5 keys 0.87 3.36 42.50

potty 0.95 6.90 95.0 mop 0.60 2.25 58.80

Average 0.89 6.82 95.0 Average 0.95 2.62 74.29
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how specific phonemes were produced. Each target object
was pairedwith a specific carrier phrase (e.g., can youfind the
car?), and speakers were asked to produce the full sentence.
Both children had typical language development, and while
they produced speech like children, they did not have any
articulatory challenges (e.g., lisps, mispronunciations); see
Supplemental Materials for analyses comparing mean pitch
across speakers; all stimuli are available on OSF for readers
to listen to. Stimuli were normalized to a peak intensity of
70.95 dB, and the timing of the target word was standardized
so it always occurred 1500 ms into the sound file (and thus
2000 ms after trial onset, see below).

Procedure

Experimental task
The experimental task was a two-picture Visual World

eye-tracking paradigm. After obtaining informed consent,
participants were seated in a quiet, dimly lit room in front
of a monitor (33.7 x 26.9cm screen, 1280 x 1024 resolu-
tion) equippedwith an SRResearch EyeLink 1000+ outfitted
with a moveable arm. The eyetracker was set to “remote”
mode, and it collected participants’ visual fixations, sam-
pling monocularly at 500 Hz, using a small, high-contrast
sticker on the participant’s forehead. Participants were first
calibrated using a nine-point calibration. Then, theywere told
that they would see two pictures on the screen and hear one
of them labeled and that they should follow the prompts they
heard. Each test trial began with a fixation cross presented

at the center of the screen for 500 ms followed by the pre-
sentation of two images positioned to the left and right of
the screen for 500 ms. Following the presentation of images,
they heard a sentence directing them to look at one of them
(e.g., a doll and a vacuum and hearing “Where is the doll?”).
The onset of the target word always occurred 2000 ms after
trial onset, each trial lasted for 5000 ms. The schematic of
the experimental trials is depicted in Fig. 1.

There were 48 trials in total. In half of the trials, the tar-
get image was child-specific (e.g. bottle, tummy), while the
other half the target was a generic item (e.g. glasses, zipper).
Also, half of the trials were produced by a child speaker, and
half of the trials were produced by an adult. Speaker-Age
was blocked such that each participant heard all the adult-
produced or all the child-produced trials first, followed by all
trials from the other speaker. Across participants, we counter-
balanced speaker pair (father-son ormother-daughter),which
Speaker-Age was heard first (adult first or child first), and
trial order (to balance child-specific and generic items, and
target side). We had eight total orders, and participants were
randomly assigned to one of these eight orders. Therefore,
Speaker-Age (adult vs. child) and Item-Type (child-specific
vs. generic) were manipulated within subjects, while speaker
pair, speaker order, and trial order weremanipulated between
subjects. Thus, each participant completed 12 trials forwhich
the target word was child-specific, produced by a child
speaker, 12 for which the target word was generic, produced
by a child speaker, 12 for which the target word was child-
specific, produced by an adult speaker, and 12 for which the
target word was generic and produced by an adult speaker.

Fig. 1 Set up of trials. The top timeline represents time since trial onset,
the images were presented for 500 ms without any speech. Then, par-
ticipants heard the directing sentence, telling them to look at one of the
images, the target word occurred at 2000 ms. Below the timeline is time
since target onset, with 0 now representing onset of the target word. The
light blue portion represents time for baseline correcting, green repre-

sents the analysis window. Half of the trials (n = 24) were produced by
an adult, and the other half (n = 24) by a child. In half of the trials, the
target image was a child-specific item (e.g., blocks, blanket) and in the
other half was a generic item (e.g., keys, hammer). Each trial lasted for
5000 ms
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The trial order within the Speaker-Age blocks was pseudo-
randomized.

Questionnaires
After the experiment, participants completed two ques-

tionnaires. The first one was a Demographic Questionnaire
that asked about their age, sex, race, and ethnicity as well as
their language background, including all the languages they
know, the age they started and stopped learning the language,
and their proficiency in each language on a scale of 1–10. The
second one was an Adult Exposure to Child Speech Ques-
tionnaire that asked about how frequently they interactedwith
children of different ages. For each age group, participants
were asked to rate how frequently they interacted with kids
of that age (daily, multiple times a week, weekly, monthly,
yearly, or never), and in what capacity (e.g., their sibling, at
a daycare job). Both questionnaires can be found on OSF.

Data analysis

We used R [Version 4.3.1; @] and the R-packages }base
[@}R-base], kableExtra (Version 1.3.4; Zhu, 2021), knitr
(Version 1.45; Xie, 2015), papaja (Version 0.1.1.9001; Aust
& Barth, 2022), readr (Version 2.1.4; Wickham et al., 2023),
and tinylabels (Version 0.2.4; Barth, 2023) for all our anal-
yses and to generate this manuscript. Following the tutorial
described in the eyetrackingR package (Forbes et al., 2023),
we cleaned the eye-tracking data, calculated the amount of
trackloss in each trial, and excluded any trial with over 25%
trackloss.

To account for possible item idiosyncrasies or preferences,
we first calculated baseline preference for the target on each
trial by calculating the proportion of time participants looked
at each image on the screen the first 500 ms of each trial
(before any speechwas heard).We chose this window of time
because it was before participants heard individual speak-
ers (adult or child) start producing the carrier phrase, which
might on its own lead to predictive looking. We then cor-
rected for these by-trial baseline preferences by subtracting
the baseline preference from the looking time to the target, on
a participant-by-trial basis. Thismethod allows us tomeasure
increases in looking time to the target after it has been named,
controlling for whether participants were alreadymore likely
to look at the target on that trial.

We had two types of analyses; in the first analysis, we
tested participants’ overall looking time across different tri-
als. We used a linear mixed effects model to examine the
influence of Speaker-Age (adult vs. child) and Item-Type
(generic vs. child-specific) on corrected target looking. In
our analyses, we selected the adult speaker as the reference
category for the Speaker-Age variable and the generic Item-
Type as the reference category for the Item-Type variable.

This allowed us to compare the effects of child speakers and
child-specific items relative to these baselines.

CorrectedProportionTargetLooking = ProportionTarget-
Looking (between 200 and 2000 ms post target onset) -
BaselineTargetLooking (between 0 and 500 ms from trial
onset)

In the second analysis, we employed a growth curve mod-
eling approach following Mirman (2017) to test whether the
looking trajectory to the target object differed as a function
of (1) whether the target was named by an adult or a child
(Speaker-Age) and (2) whether the word was considered to
be child-specific or not (Item-Type). Here, too, we accounted
for baseline preferences by subtracting the baseline prefer-
ence from each time bin (see below) for the growth curve
analysis.

Across all three experiments, the data were binned into
20-ms time intervals, and the proportions of target fixation
for each Item-Type were analyzed from 200 to 2000 ms
post-word onset (1800ms total, see preregistration).We con-
sidered Speaker-Age and Item-Type as predictors. We fit a
series of mixed-effects models to predict participants’ look-
ing to the target based on the condition of each trial while
accounting for random intercepts across trials and subjects.
The linear mixed-effects models were fitted using the lmer
function from the lme4 package in R. We started the model
selection process with a model that included only a linear
time term. Then, step by step, we added quadratic, cubic and
quartic time terms respectively to assess if they provided a
better fit to the data. Each time,we compared the fit of the new
model to the previous one using an ANOVA. Finding that the
new model provided a significantly better fit, we proceeded
by adding another time term. This stepwise approach allowed
us to determine the most appropriate model. Additionally,
all of the models incorporated interactions between Speaker-
Age, Item-Type and each time term, allowing us to assess
the impact of these variables over time. Also, to account for
variability across different trials and subjects, we included
by item and by subject random intercepts.

Results

At the first step of data preprocessing (before using the
corrected proportion of target looking), we tested for the per-
centage of track loss at the trial level for each participant and
excluded any trial that had > 25% track loss. This resulted
in the removal of 56 trials from 18 participants. On average,
participants contributed data from 47 trials, ranging from 37
to 48 trials each. All participants contributed a minimum of
18 trials in the adult speaker condition and 18 trials in the
child speaker condition, meeting our preregistered criteria
for inclusion.

Then, using our corrected proportion of target looking,
we also checked whether aspects of our counterbalancing
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(i.e., whether the first speaker was an adult vs. child, and
whether they were in the male speaker vs. female speaker
condition) influenced overall performance. The age of the
first speaker (b = 0.00, 95% CI [−0.04, 0.03], t(38) =
−0.24, p = .812) did not influence participants’ overall per-
formance during the task, but speaker gender did (b = 0.04,
95% CI [0.00, 0.07], t(38) = 2.24, p = .031), such that
participants increased their looking time relative to baseline
more when hearing male speech (M = 44.70, SD = 4.75) than
when hearing female speech (M = 40.90, SD = 5.98).

Our preregistered analysis planwas to test whether overall
increases in target looking differed by (1) Speaker-Age (child
or adult) (2) Item-Type (generic or child-specific), and (3) the
interaction between the two. Because we found a significant
difference in target looking for male vs. female speech, we
also ran a model that included speaker-gender, allowing it to
interactwith Speaker-Age and Item-Type, and testedwhether
this was a better fit for the data.

The model with speaker-gender was not a significantly
better fit (p = .166), and therefore we interpret the pre-
registered model without speaker gender. The effect of
Speaker-Age (β̂ = −0.01, 95% CI [−0.03, 0.00], t(117) =
−1.65, p = .102) and the effect of Item-Type (β̂ = 0.00,
95% CI [−0.02, 0.01], t(117) = −0.14, p = .886) were
not significant. However, the interaction between Speaker-
Age and Item-Type was significant (β̂ = 0.02, 95% CI
[0.00, 0.03], t(117) = 2.00, p = .048), such that participants
increased their looking time significantly more to generic
items produced by adults (M = 45.80) relative to children
(M = 40.29, t(77.23) = 2.29, p = .025), but did not dif-
fer in their increase in looking time to specific items across
speakers (t(75.60) = −0.26, p = .799; M~Child Specific~
= 43.09, M~Adult Specific~ = 42.56). Overall, this analysis
suggests that participants spend more time looking at the tar-
get when the target is a generic item produced by adults, and
spend the least time looking when children produce generic
items. However, listening to children produce child-specific
words did not result in larger increases in target looking.
Together, this suggests that participants are potentially inte-
grating speaker information with the referent, though we do
not see the expected facilitation when children are producing
child-specific items.

In the next analysis, we consider the looking time over
the trial using a growth-curve model. This allows us to test
whether the trajectory of looking time differs across these
conditions. We followed the best practices outlined in the
tutorial for eyetrackingR (Dink & Ferguson, 2015; Mirman,
2017) for these growth curve models. A model with main
effects of Speaker-Age, Item-Type, and interactions with
four time terms (linear, quadratic, cubic, and quartic) was
a better fit than models with three time terms or less (p <

.001). Here, too, we tested whether adding speaker-gender
improved model fit. The model that included speaker-gender

and all its interactions was a significantly better fit for the
data (p < .001). This model included a significant four-way
interaction between the cubic time term and Speaker-Age,
Item-Type, and speaker gender. Since four-way interactions
are incredibly difficult to interpret,we re-ran the growth curve
models for each speaker-gender condition separately.

In the female speaker condition, there was a signifi-
cant interaction between Speaker-Age and Item-Type, as
well as significant three-way interactions between the linear,
quadratic, and cubic terms and Speaker-Age and Item-Type,
see Table 2. Figure 2 shows that participants increased their
looking time faster (linear term) and reached different peaks
(quadratic term) and different peak sharpness (cubic term)
across different conditions,with the highest target looking for
item types that were congruent with the speaker: adults pro-
ducing generic items and children producing child-specific
items. They increased their looking time least when children
produced generic items.

In the male speaker condition, in contrast, there were no
significant three-way interactions, but there were significant
interactions between the cubic and quartic time terms and
Speaker-Age, and significant interactions between all four
time terms and Item-Type, see Table 3. Figure 2 shows sim-
ilar overall patterns of target looking relative to the female
speaker conditions. However, the steepness (linear term) of
increases in looking time and the peak (quadratic term) varied
only as a function of Item-Type, with participants reach-
ing higher peaks faster for adult relative to child-produced
speech, while peak sharpness and shape (cubic and quartic
terms) differing for both Speaker-Age and Item-Type. More
specifically, participants achieved the highest target looking
again for item types that were congruent with the speaker,
when adults produced generic items and children produced
child-specific items. Participants also reached a higher peak
than they did in the female speech condition. Here, too, the
target looking for children producing generic items was low-
est.

Exploratory analysis of self-reported data on experience
with children

While increases in target looking were high overall, it is pos-
sible that target looking varied across participants based on
their own experiences interacting with children. To inves-
tigate this question, we analyzed participants’ self-reported
data about their frequencyof interactionwith children. Partic-
ipantswere asked to rate howoften they interactwith children
across five different age groups: under 1 year, 1–2 years, 3–4
years, 5–6 years, and 7 years or older. The scale of responses
included: ‘Never,’ ‘Yearly (once a year),’ ‘Monthly (once a
month),’ ‘Weekly (once a week),’ ‘Multiple times a week,’
and ‘Daily.’ Each response was mapped to a numerical score
from 0 to 5 respectively (‘Never’ = 0, ‘Yearly (once a year)’
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Table 2 Experiment 1 Growth
curve modeling results for
female speech condition. Ot1
refers to linear term, Ot2 refers
to quadratic term, Ot3 refers to
cubic term, Ot4 refers to quartic
term

Term β̂ 95% CI t df p

Intercept 0.37 [0.33, 0.41] 17.41 38.27 < .001

Ot1 0.89 [0.86, 0.93] 53.78 74,370.95 < .001

Ot2 -0.52 [-0.55, -0.49] -31.26 74,370.95 < .001

Ot3 0.18 [0.14, 0.21] 10.68 74,370.95 < .001

Ot4 -0.05 [-0.08, -0.02] -2.95 74,370.95 .003

Speaker contrast1 -0.01 [-0.01, -0.01] -6.06 74,375.76 < .001

Type contrast1 0.00 [-0.03, 0.03] -0.02 22.00 .984

Ot1 × Speaker contrast1 0.05 [0.01, 0.08] 2.79 74,370.95 .005

Ot2 × Speaker contrast1 0.02 [-0.01, 0.05] 1.24 74,370.95 .215

Ot3 × Speaker contrast1 -0.01 [-0.04, 0.02] -0.50 74,370.95 .615

Ot4 × Speaker contrast1 0.00 [-0.04, 0.03] -0.24 74,370.95 .808

Ot1 × Type contrast1 0.09 [0.06, 0.12] 5.55 74,370.95 < .001

Ot2 × Type contrast1 -0.07 [-0.10, -0.04] -4.32 74,370.95 < .001

Ot3 × Type contrast1 0.03 [0.00, 0.06] 1.82 74,370.95 .069

Ot4 × Type contrast1 0.00 [-0.04, 0.03] -0.17 74,370.95 .864

Speaker contrast1 × Type contrast1 0.01 [0.00, 0.01] 4.64 74,374.35 < .001

Ot1 × Speaker contrast1 × Type contrast1 0.03 [0.00, 0.07] 2.02 74,370.95 .043

Ot2 × Speaker contrast1 × Type contrast1 -0.05 [-0.09, -0.02] -3.16 74,370.95 .002

Ot3 × Speaker contrast1 × Type contrast1 0.04 [0.01, 0.07] 2.48 74,370.95 .013

Ot4 × Speaker contrast1 × Type contrast1 -0.02 [-0.06, 0.01] -1.36 74,370.95 .173

= 1, ‘Monthly (once a month)’ = 2, ‘Weekly (once a week)’
= 3, ‘Multiple times a week’ = 4, ‘Daily’ = 5) for each of
the five age groups. Next, we generated an “Experience with
Children Score” that reflected each participant’s overall fre-
quency of experience with children. In principle, the possible
range of scores is 0 (reflecting never interactingwith children
in any of the age groups) to 20 (reflecting daily interaction
with children in each age group). In this group of partici-
pants, the range of responses was 0–17, with a mean of 6.62,
suggesting relatively little experience with children overall.
We added this Experience with Children Score to our best-fit
model that included Speaker-Age, Item-Type, speaker gen-
der, four time-terms, and the interaction between them as the
predictors. Then, we used ANOVA to compare the previous
best-fitmodel (with four time terms and speaker gender) with
the one including Experience with Children Score and saw
that the addition of this score did not significantly improve
model fit (p = .065), see Supplemental Materials for his-
tograms plotting the distribution of these scores as well as
additional analyses using a categorical variable of experi-
ence.

Experiment 1 Discussion

In brief, we found that this task was relatively easy, with par-
ticipants significantly increasing their target looking across
conditions in this simple two-picture Visual World task. We
hypothesized that speech from children might be more chal-
lenging to process, but we did not find any overall effect of
Speaker-Age. We also hypothesized that processing would

be easier when there was a ‘match’ between the speaker and
the item, such that generic items produced by adults and
child-specific items produced by children would be easiest
for participants to predict and respond to. However, we only
found evidence for one half of this hypothesis, across model
types, participants seemed to increase their looking timemost
when adults produced generic items, and least when children
produced generic items, but we did not find evidence for
an advantage in processing child-specific items produced by
children. Together, we take these results to cautiously sug-
gest that participants are integrating information about the
speaker when creating expectations about what they might
say. InExperiment 2,we addpink speech-shaped background
noise to test processing of child and adult speech, and the role
of prediction about what speakers might say, under more dif-
ficult conditions.

Experiment 2

Method

Participants

Forty-one monolingual English speakers (mean age = 20,
SD = 1.94) participated in Experiment 2. They self-disclosed
their race and ethnicity: 29 identified as White, 3 as Asian, 6
as Black or African American, and three identified as Other;
38 identified as not Hispanic or Latino, two Hispanic or
Latino, and one was unknown or wished not to report.
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Fig. 2 Experiment 1: corrected proportion of looking to the target over
time based on condition. Each line represents one Speaker-Age and
Item-Type condition mean, and shaded ribbons show 95% confidence
intervals using a normal distribution, smoothed using a span of 0.25.
The x-axis shows the time since word onset in milliseconds (ms) and
the y-axis indicates the proportion of target looking; -2000 to -1500 ms

(blue vertical lines) is the baseline preference window of analysis, tar-
get word happened at 0 ms, 200–2000ms (green vertical lines) is the
time window for analysis. The grey horizontal line indicates 0 change
from baseline looking. Overall, this graph shows the highest looking to
the target when the Speaker-Age and Item-Type were congruent. See
Supplementals for looking time graph with overlaid model predictions

Stimuli

Materials used in this experiment were the same as in Exper-
iment 1 except for the presence of pink background noise.
We generated the pink noise using the Praat Vocal Toolkit
(Corretge, 2012), which uses a Gaussian distribution (mean
= 0, standard deviation = 1) with a sampling rate of 44,100,
and has equal spectral power per frequency bin on a loga-
rithmic frequency scale. We measured the amplitude of each
individual carrier phrase and matched the amplitude of the
pink noise so that each file had a 0dB signal-to-noise ratio.
The pink noise was matched in length with the entire spo-
ken utterance, such that the noise only occurred during the
speech signal and participants could not habituate to it prior
to speech onset. We chose to use pink noise because it is
speech-shaped background noise (in contrast to white noise),
and has been shown to increase speech perception difficulty,
but does not include other types of noises that may further
increase difficulty, compete for attention, or potentially pro-
vide information about upcoming speech (e.g., multi-talker

babble, other naturalistic markers) (Maillard et al., 2023).
Also, compared to white noise, pink noise is significantly
less unpleasant and induces lower feelings of unease, which
makes it a more suitable energetic masker in experimental
contexts (Færøvik et al., 2025). As in Experiment 1, silence
was added so that the target word always occurred 2000 ms
after trial onset.

Procedure

We used the same procedure as in Experiment 1.

Data analysis

Data analysis followed the same protocol as in Experiment 1.

Results

As above, we first preprocessed the data; 56 trials from 13
participants were excluded because of havingmore than 25%
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Table 3 Experiment 1 growth
curve modeling results for male
speech condition. Ot1 refers to
linear term, Ot2 referes to
quadratic term, Ot3 refers to
cubic term, Ot4 refers to quartic
term

Term β̂ 95% CI t df p

Intercept 0.41 [0.38, 0.44] 25.87 40.25 < .001

Ot1 0.88 [0.86, 0.91] 60.30 93,267.00 < .001

Ot2 -0.63 [-0.66, -0.60] -43.07 93,267.00 < .001

Ot3 0.28 [0.25, 0.31] 18.87 93,267.00 < .001

Ot4 -0.07 [-0.09, -0.04] -4.45 93,267.00 < .001

Speaker contrast1 -0.01 [-0.02, -0.01] -9.56 93,272.23 < .001

Type contrast1 0.00 [-0.03, 0.02] -0.30 22.00 .768

Ot1 × Speaker contrast1 -0.01 [-0.03, 0.02] -0.37 93,267.00 .709

Ot2 × Speaker contrast1 0.00 [-0.03, 0.03] 0.05 93,267.00 .961

Ot3 × Speaker contrast1 -0.05 [-0.08, -0.02] -3.64 93,267.00 < .001

Ot4 × Speaker contrast1 0.03 [0.00, 0.06] 2.24 93,267.00 .025

Ot1 × Type contrast1 0.13 [0.10, 0.16] 8.83 93,267.00 < .001

Ot2 × Type contrast1 -0.09 [-0.12, -0.06] -6.13 93,267.00 < .001

Ot3 × Type contrast1 0.03 [0.01, 0.06] 2.38 93,267.00 .017

Ot4 × Type contrast1 0.04 [0.01, 0.07] 2.62 93,267.00 .009

Speaker contrast1 × Type contrast1 0.02 [0.02, 0.03] 15.22 93,268.82 < .001

Ot1 × Speaker contrast1 × Type contrast1 0.00 [-0.03, 0.02] -0.29 93,267.00 .773

Ot2 × Speaker contrast1 × Type contrast1 -0.02 [-0.05, 0.01] -1.38 93,267.00 .167

Ot3 × Speaker contrast1 × Type contrast1 -0.01 [-0.04, 0.02] -0.52 93,267.00 .606

Ot4 × Speaker contrast1 × Type contrast1 -0.02 [-0.05, 0.01] -1.18 93,267.00 .239

track loss. The minimum number of trials contributed by all
of the participants was 19 in the adult-speaker condition and
15 in the child-speaker condition. They all contributed data
from 47 trials on average, ranging from 34 to 48.

We then used our corrected proportion target looking
to test for the influence of our counterbalancing choices
(i.e., whether the first speaker was an adult vs. child, and
whether they were in the male speaker vs. female speaker
condition) on participants’ performance. Age of the first
speaker did not influence participants’ performance during
the task (b = −0.01, 95% CI [−0.03, 0.01], t(39) = −1.05,
p = .302), but speaker gender did (b = 0.03, 95% CI
[0.01, 0.05], t(39) = 2.84, p = .007) such that participants
increased their target looking more for female speakers (M
= 38.83, SD = 5) than male speakers (M = 33.06, SD = 7).

Then, we analyzed the overall increases in target look-
ing as a function of the Speaker-Age, Item-Type, and their
interaction. As for Experiment 1, we tested whether adding
speaker-gender improvedmodel fit. Themodel with speaker-
gender and its interactions was a significantly better fit for
the data (p < .001), therefore we interpret the effects from
this model. This model included a main effect of Item-Type
(β̂ = −0.03, 95% CI [−0.05,−0.01], t(117) = −3.01,
p = .003), such that participants increased their looking time
to generic items (M = 39, SD = 12) more than child-specific
items (M = 33, SD = 14); and a main effect of speaker gender
such that participants increased their looking time more for
female speakers relative to male speakers (as reported above).

There were also significant interactions between Speaker-
Age and speaker-gender (β̂ = −0.04, 95%CI [−0.06,−0.02],
t(117) = −4.19, p < .001), such that when the speaker was
male, participants increased their target looking more when
the speaker was a child (M = 38, SD = 11) than an adult (M
= 28, SD = 16), while for female speakers the pattern was
reversed (childM= 36, child SD= 11; adultM= 42, adult SD
= 11). There was also a significant interaction between Item-
Type and speaker-gender (β̂ = 0.02, 95% CI [0.01, 0.04],
t(117) = 2.71, p = .008), such that for female speakers,
participants increased their looking time to generic (M = 39,
SD = 11) and child-specific (M = 39, SD = 12) items to sim-
ilar extents. In contrast, in the male condition, participants
increased their looking time to generic items (M = 38, SD =
13) more than child-specific items (M = 28, SD = 14).

These analyses suggest that male adult speech was more
difficult to understand in noise (despite leading to slightly
higher overall target looking in silence in Experiment 1). We
also found that participants increased their target looking
more when the target object was generic relative to when it
was child-specific.While there were no interactions between
Speaker-Age and Item-Type here, interactions with speaker-
gender suggest that the pattern of results differed for male
and female speakers.

For the growth curve model, we followed the same model
selection process used in Experiment 1. Themodel including
all four time terms was the best fit (p < .001). Here, too,
including speaker gender improved model fit (p < .001),
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and therefore we reran models for female and male speakers
separately to improve interpretability.

In the female speaker condition, the model revealed a sig-
nificant interaction between Speaker-Age and Item-Type, as
well as a significant three-way interaction between the lin-
ear, quadratic, and cubic time terms and Speaker-Age and
Item-Type, see Table 4 for full model output. As demon-
strated in Fig. 3, the looking time patterns now differ relative
to Experiment 1, participants were faster (linear term) and
reached higher peaks (quadratic term) on adult speech rel-
ative to child speech, and the sharpness of the peaks varied
as a function of Speaker-Age and Item-Type. Here, partic-
ipants reached higher peaks for adult speech, but exhibited
higher peaks for child-specific items when produced by both
children and adults.

In the male speaker condition, the model again revealed a
significant interaction between Speaker-Age and Item-Type,
as well as significant three-way interactions between the
linear, quadratic, and quartic terms and Speaker-Age and
Item-Type, see Table 5 for full model output. As demon-
strated in Fig. 3, participants showed different slopes and
peaks across conditions. Specifically, participants actually
increased their looking time more in child-produced speech
conditions, reaching the highest peak when children pro-
duced generic items. In contrast, participants struggled most
with looking to the target when it was produced by an adult
and it was child-specific. Patterns of increases in target look-
ing were similar for adults producing generic items and
children producing child-specific items. Combined with the

overall looking analyses, these findings suggest that male
adult speech was harder to process in noise, but that back-
ground noise may have resulted in adults relying more on
their predictions, and that adults are more likely to talk about
generic items than child-specific items.

Exploratory analysis of self-reported data on experience
with children

We analyzed participants’ self-reported frequency of inter-
action with children as in Experiment 1. Here, participants’
average Experience with Children score was 7.48. Again,
we added the Experience with Children Score to our best-
fit model, which included Speaker-Age, Item-Type, speaker
gender, four time terms, and their interactions as predictors.
Then, we ran an ANOVA to compare the last best-fit model
with the new one including Experience with Children Score
and saw that the addition of this score did not significantly
improve model fit (p = .679) suggesting that in the pres-
ence of pink background noise, the amount of experience
with children did not affect participants’ recognition of child-
produced speech and child-specific items, see Supplemental
Materials for histograms plotting the distribution of these
scores as well as additional analyses using a categorical vari-
able of experience.

Experiment 2 Discussion

Comparing the results of the first two experiments, we can
see that adding the pink background noise significantly influ-

Table 4 Experiment 2 growth
curve modeling results for
female speech condition. Ot1
refers to linear term, Ot2 refers
to quadratic term, Ot3 refers to
cubic term, Ot4 refers to quartic
term

Term β̂ 95% CI t df p

Intercept 0.36 [0.32, 0.40] 19.53 37.43 < .001

Ot1 1.12 [1.09, 1.15] 68.04 83,728.99 < .001

Ot2 -0.68 [-0.71, -0.64] -41.18 83,728.99 < .001

Ot3 0.22 [0.19, 0.25] 13.37 83,728.99 < .001

Ot4 0.04 [0.01, 0.07] 2.41 83,728.99 .016

Speaker contrast1 -0.03 [-0.03, -0.03] -18.11 83,735.15 < .001

Type contrast1 0.00 [-0.03, 0.02] -0.33 22.00 .747

Ot1 × Speaker contrast1 0.12 [0.09, 0.16] 7.57 83,728.99 < .001

Ot2 × Speaker contrast1 0.05 [0.02, 0.08] 3.15 83,728.99 .002

Ot3 × Speaker contrast1 -0.13 [-0.16, -0.10] -7.81 83,728.99 < .001

Ot4 × Speaker contrast1 0.10 [0.06, 0.13] 5.80 83,728.99 < .001

Ot1 × Type contrast1 0.16 [0.13, 0.19] 9.88 83,728.99 < .001

Ot2 × Type contrast1 -0.01 [-0.04, 0.02] -0.69 83,728.99 .489

Ot3 × Type contrast1 -0.05 [-0.08, -0.02] -3.16 83,728.99 .002

Ot4 × Type contrast1 0.03 [0.00, 0.06] 1.66 83,728.99 .097

Speaker contrast1 × Type contrast1 -0.01 [-0.01, 0.00] -4.27 83,732.36 < .001

Ot1 × Speaker contrast1 × Type contrast1 0.04 [0.01, 0.08] 2.66 83,728.99 .008

Ot2 × Speaker contrast1 × Type contrast1 0.06 [0.03, 0.09] 3.51 83,728.99 < .001

Ot3 × Speaker contrast1 × Type contrast1 -0.06 [-0.09, -0.03] -3.67 83,728.99 < .001

Ot4 × Speaker contrast1 × Type contrast1 0.02 [-0.01, 0.05] 1.18 83,728.99 .238
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Fig. 3 Experiment 2: corrected proportion of looking to the target over
time based on condition. Each line represents one Speaker-Age and
Item-Type condition mean, and shaded ribbons show 95% confidence
intervals using a normal distribution, smoothed using a span of 0.25. The
x-axis shows the time since word onset in milliseconds (ms) and the y-
axis indicates the proportion of target looking; -2000 to -1500 ms (blue
vertical lines) is the baseline preferencewindowof analysis, target word

happened at 0ms, 200–2000ms (green vertical lines) is the timewindow
for analysis. The grey horizontal line indicates 0 change from baseline
looking.Overall, this graph shows that participants reachedhigher peaks
when female adults produced speech, while for male speech, partici-
pants reached higher peaks for child-produced speech, and for generic
items. See Supplementals for looking time graph with overlaid model
predictions

enced word recognition, as adults increased their looking
time to the target less in the pink noise condition (M = 36,
SD = 7.00) compared to Experiment 1 without any back-
ground noise (M = 43, SD = 6, p < .001). However, this
effect was driven by the male speech condition, as in Experi-
ment 2 participants increased their looking time to the target
significantly less for male speech (M = 33, SD = 14) than in
Experiment 1 (M = 45, SD = 9, t(137.89) = 6.35, p < .001),
a difference that was not significant for female speech across
experiments, t(149.03) = 1.09, p = .278.

Comparing across these experiments, we can see that for
female speech, background noise actually did not negatively
impact the processing of either the adult or child speech. If
anything, participants increased their target looking more for
adult speech in background noise, though this difference is
not significant. For male speech, background noise increased
task difficulty overall, but had the largest effect when adults
produced child-specific items. First, this suggests that male

speech is more masked by background noise than female
speech, a finding that has previously been reported in the lit-
erature (Brown&Bacon, 2010;McBride, Hodges,&French,
2008; Oh et al., 2022). However, since the biggest “cost” was
seen when male adults produced child-specific items, this
may also suggest that the presence of pink background noise
made it harder for participants to process sentences that were
more difficult to predict – male adults talking about child-
specific items. In other words, while participants may have
been able to rely on predictions to expect male adults to talk
about generic items, and children to talk about generic or
child-specific items, male adults talking about child-specific
items may not have conformed to any predictions. In the
next experiment, we examined how background noise that is
representative of a child’s natural environment would affect
adults’ word recognition; possibly as it might make predict-
ing that children would be talking, or that adults (male or
female) would be talking about child-specific things, easier.
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Table 5 Experiment 2 growth
curve modeling results for male
speech condition. Ot1 refers to
linear term, Ot2 refers to
quadratic term, Ot3 refers to
cubic term, Ot4 refers to quartic
term

Term β̂ 95% CI t df p

Intercept 0.30 [0.26, 0.35] 12.39 39.10 < .001

Ot1 1.07 [1.04, 1.11] 64.14 88,228.01 < .001

Ot2 -0.48 [-0.52, -0.45] -29.01 88,228.01 < .001

Ot3 0.00 [-0.03, 0.04] 0.27 88,228.01 .790

Ot4 0.15 [0.11, 0.18] 8.82 88,228.01 < .001

Speaker contrast1 0.04 [0.04, 0.04] 23.17 88,231.34 < .001

Type contrast1 -0.05 [-0.09, -0.01] -2.54 22.00 .018

Ot1 × Speaker contrast1 0.19 [0.16, 0.22] 11.48 88,228.01 < .001

Ot2 × Speaker contrast1 -0.06 [-0.10, -0.03] -3.85 88,228.01 < .001

Ot3 × Speaker contrast1 0.00 [-0.03, 0.03] 0.04 88,228.01 .965

Ot4 × Speaker contrast1 -0.03 [-0.06, 0.01] -1.55 88,228.01 .120

Ot1 × Type contrast1 0.01 [-0.02, 0.04] 0.62 88,228.01 .534

Ot2 × Type contrast1 0.05 [0.02, 0.09] 3.28 88,228.01 .001

Ot3 × Type contrast1 0.01 [-0.02, 0.04] 0.56 88,228.01 .575

Ot4 × Type contrast1 0.01 [-0.03, 0.04] 0.34 88,228.01 .733

Speaker contrast1 × Type contrast1 0.01 [0.00, 0.01] 4.72 88,230.99 < .001

Ot1 × Speaker contrast1 × Type contrast1 0.12 [0.09, 0.16] 7.32 88,228.01 < .001

Ot2 × Speaker contrast1 × Type contrast1 -0.08 [-0.12, -0.05] -5.07 88,228.01 < .001

Ot3 × Speaker contrast1 × Type contrast1 0.00 [-0.04, 0.03] -0.19 88,228.01 .847

Ot4 × Speaker contrast1 × Type contrast1 -0.03 [-0.07, 0.00] -2.04 88,228.01 .042

Experiment 3

Method

Participants

Thirty-nine monolingual English speakers (mean age = 20,
SD = 1.76) participated in Experiment 3. One additional par-
ticipant was tested but excluded from the analyses due to not
contributing enough data after data cleaning, see below. Par-
ticipants self-disclosed their race and ethnicity: 28 identified
as White, three as Asian, five as Black or African American,
and three identified as Other; 36 identified as not Hispanic
or Latino, and three Hispanic or Latino.

Stimuli

The materials were the same as in Experiment 1. However,
this time, the sentence prompts were embedded with real-
world background noise. To create real-world background
noise clips that simulate an auditory environment where
one may hear speech from children or about child-specific
things, we used clips from a LENA daylong recording cor-
pus (VanDam, 2018) accessed via Homebank (VanDam et
al., 2016). We selected a recording for a target child who
was 46 months old, as this was closest to the age of the child
speakers used in our experiments. We extracted LENA seg-
mented clips from adult female (FAN), adult male (MAN),
and electronic (ELN) segments. We selected 14 clips from

each of the three noise groups and ensured that child speech
was not present in any of the clips. We created background
noise files that included both an electronic clip and an adult
clip. Specifically, electronic clips were pseudo-randomly
combined with FAN clips to create 48 distinct background
sounds for conditions that included father and son target
sentences and pseudo-randomly combined them with MAN
clips to create 48 distinct background sounds for conditions
that included mother and daughter target sentences. Then,
each of these combined background noise sound files was
pseudo-randomly assigned to one of the target sounds, and
their amplitude and length were also matched to the ampli-
tude and length of the target sentences, resulting in a 0dB
signal-to-noise ratio (0SNR) 1. As above, the target word
always occurred at 2000-ms post-trial start. Thus, partici-
pants who heard female talkers (mother and daughter pair)
during the experiment heard the female-produced target sen-
tences embedded in background noise from electronics and
MAN clips, while the participants who heard male talkers
(father and son pair) heard the male-produced target sen-
tences embedded in background noise from electronics and
FAN clips. While this noise itself was not directly rele-
vant to the content of the speech, following prior research
on contextual cue effects (Mitchel & Weiss, 2010; Stilp,

1 We conducted a norming study to ensure that male and female speech
in real world background noise was similarly intelligible (as measured
by transcription accuracy), and found that it was, see Supplemental
Materials.
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2020), we proposed that these sounds taken from children’s
homes (specifically the electronic sounds from e.g., chil-
dren’s songs) could serve as a contextual cue that primes
listeners to think of children.

Procedure

The procedure was the same as in Experiment 1.

Data analysis

We followed the same data analysis pipeline as in Experi-
ment 1.

Results

In Experiment 3, 60 trials from 12 participants were excluded
due to more than 25% track loss. After excluding one par-
ticipant who contributed only 11 trials in the adult-produced
speech condition and therefore did not meet our preregis-
tered inclusion criteria, all participants contributed data for
17 trials in the adult-produced speech condition and 17 in the
child-produced speech condition. The average data contribu-
tion of all participants was 47 trials, and ranged from 38 to
48.

Using our corrected target-looking procedure, we tested
the influence of our counterbalancing decisions on partici-
pants’ performance. We saw that the age of the first speaker
(b = −0.01, 95% CI [−0.06, 0.04], t(36) = −0.31, p =
.757) did not influence participants’ performance during the
task, but their gender did (b = 0.13, 95% CI [0.11, 0.15],
t(36) = 12.22, p < .001) such that the mean increase in
target looking for female speakers (M = 36.76, SD = 6) was
higher than male speakers (M = 10.50, SD = 7).

Next, overall increases in target looking were analyzed
as a function of Speaker-Age, Item-Type, and their interac-
tion. As above, we tested whether including speaker-gender
would improvemodel fit. It did (p< .001), sowe interpret that
model here. This model included an effect of speaker-gender
(β̂ = 0.13, 95% CI [0.11, 0.15], t(36) = 12.50, p < .001),
such that participants increased their looking time more to
female speech, as reported above. There were also signifi-
cant interactions between Speaker-Age and speaker-gender
(β̂ = −0.05, 95% CI [−0.07,−0.03], t(108) = −5.03,
p < .001) and Item-Type and speaker gender (β̂ = −0.03,
95% CI [−0.05,−0.01], t(108) = −3.29, p = .001), which
are best characterized by a three-way interaction between
Speaker-Age, Item-Type and speaker gender (β̂ = 0.02, 95%
CI [0.00, 0.04], t(108) = 2.39, p = .018).

For female speech, participants increased their target look-
ing more overall for adult speech (M = 42, SD = 14) than
child speech (M = 31, SD = 10). They also increased their
target looking more for generic (M = 40, SD = 13) than

child-specific items (M = 34, SD = 13). For male speech, par-
ticipants increased their target looking more overall for child
speech (M = 15, SD = 14) than adult speech (M = 6, SD =
13), and increased their looking time more for child-specific
(M = 14, SD = 12) relative to generic items (M = 7, SD =
15). These patternswere driven by participants not increasing
their looking time when male adults produced generic items
(M = 0, SD = 13). These results suggest that the presence of
real-world background noise further increased challenges in
processing male speech, and male adult speech, specifically.

In the final step of analysis, we used the growth-curve
modeling to look at the pattern of participants’ looking to
the target over time in all of the conditions. The model that
included themain effects of the Speaker-Age, Item-Type, and
interactionswith four time terms (linear, quadratic, cubic, and
quartic) was a better fit compared to the ones with less time
terms (p < .001). Here, too, a model that included speaker
gender was a significantly better fit for the data (p< .001), so
we reran the models for female and male speech separately.

For female speech, there was a significant interaction
between Speaker-Age and Item-Type, as well as a signifi-
cant three-way interaction between the linear time term and
Speaker-Age and Item-Type. See Table 6 for full model out-
put. Figure 4 shows that, despite the background noise indi-
cating the presence of children, participants still increased
their looking time fastest (linear term) when female adults
produced generic items. While looking patterns were similar
for the remaining three conditions, participants still increased
their looking time the least when children produced generic
items.

For male speech, there was a significant interaction
between Speaker-Age and Item-Type, as well as significant
three-way interactions between the quadratic time term and
Speaker-Age and Item-Type, see Table 7 for full model out-
put. Figure 4 highlights a similar pattern to Experiment 2,
participants’ slope and peak increases in target looking dif-
fered as a function of condition. Most notably, participants
reached the highest peak (quadratic term) when children
produced child-specific items, followed by children produc-
ing generic items. They increased target looking least when
adults produced generic items, not increasing their looking
time at all when these were named, as reflected also in the
overall looking time analyses.

Exploratory analysis of self-reported data on experience
with children

In Experiment 3, participants’ self-reported Experience with
Children Score was 5.95. This score was added to our best-fit
model that included Speaker-Age, Item-Type, speaker gen-
der, four time terms, and the interaction between them as
the predictors. Next, we ran ANOVA to compare the last
best-fit model with the new one including Experience with
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Table 6 Experiment 3 growth
curve modeling results for
female speech condition. Ot1
refers to linear term, Ot2 refers
to quadratic term, Ot3 refers to
cubic term, Ot4 refers to quartic
term

Term β̂ 95% CI t df p

Intercept 0.33 [0.29, 0.38] 15.21 37.93 < .001

Ot1 1.03 [1.00, 1.07] 57.74 74,641.01 < .001

Ot2 -0.61 [-0.65, -0.58] -34.12 74,641.01 < .001

Ot3 0.23 [0.20, 0.27] 12.88 74,641.01 < .001

Ot4 -0.01 [-0.05, 0.02] -0.63 74,641.01 .531

Speaker contrast1 -0.05 [-0.06, -0.05] -27.63 74,645.52 < .001

Type contrast1 -0.03 [-0.06, 0.01] -1.62 22.00 .120

Ot1 × Speaker contrast1 0.11 [0.07, 0.14] 5.93 74,641.01 < .001

Ot2 × Speaker contrast1 -0.04 [-0.07, 0.00] -2.20 74,641.01 .028

Ot3 × Speaker contrast1 -0.02 [-0.06, 0.01] -1.37 74,641.01 .169

Ot4 × Speaker contrast1 0.07 [0.04, 0.11] 3.95 74,641.01 < .001

Ot1 × Type contrast1 0.16 [0.12, 0.19] 8.78 74,641.01 < .001

Ot2 × Type contrast1 -0.07 [-0.10, -0.03] -3.76 74,641.01 < .001

Ot3 × Type contrast1 -0.05 [-0.08, -0.01] -2.69 74,641.01 .007

Ot4 × Type contrast1 0.04 [0.00, 0.07] 2.03 74,641.01 .042

Speaker contrast1 × Type contrast1 0.02 [0.02, 0.02] 10.04 74,643.35 < .001

Ot1 × Speaker contrast1 × Type contrast1 0.05 [0.02, 0.09] 2.93 74,641.01 .003

Ot2 × Speaker contrast1 × Type contrast1 -0.02 [-0.05, 0.02] -0.99 74,641.01 .324

Ot3 × Speaker contrast1 × Type contrast1 -0.03 [-0.06, 0.01] -1.54 74,641.01 .125

Ot4 × Speaker contrast1 × Type contrast1 -0.03 [-0.07, 0.00] -1.83 74,641.01 .068

Children Score and saw that the addition of this score did
not significantly improve model fit (p = .996) suggesting
that the amount of experience with children did not affect
participants’ recognition of child-produced speech and child-
specific items in the presence of real-world background
noise, see Supplemental Materials for histograms plotting
the distribution of these scores as well as additional analyses
using a categorical variable of experience.

Experiment 3 Discussion

Comparing across experiments, we find that participants
increased their target looking less in Experiment 3 (M = 23)
than in Experiment 2 (M = 36, t(267.43) = 6.90, p < .001),
but here, too, this was driven by the male speech condition
(Male Exp 2M= 33;Male Exp 3M= 11; t(161.91) = 10.17,
p < .001), as there were no differences in target looking in
the female speech condition (Female Exp 2 M = 39; Female
Exp 3 M = 37; t(139.51) = 0.94, p = .351). Comparing
to Experiment 1 reveals the same pattern, an overall dif-
ference (t(227.63) = 11.45, p < .001) that is driven by
the male speech condition (t(132.12) = 18.64, p < .001)
with a marginal difference in the female speech condition
(t(136.83) = 1.89, p = .061).

We hypothesized that real-world background noise would
help participants predict that children would be speaking,
increasing target looking for child speech and possibly
specifically child-specific items. We found some evidence
for this pattern only in the male speech condition. Compared

to pink background noise, which is uninformative, partici-
pants who heardmale speech in real-world background noise
increased their looking time more for child-specific items
relative to generic items, when produced by both adults and
children. This suggests that participants could have used the
real-world background noise to make predictions about what
would be talked about. However, this pattern was not evi-
dent in the female speech condition, in which the presence
of background noise did not have any effect on increases in
target looking.

Discussion

Theaimof this studywas to investigate howyoungadults pro-
cess a previously understudied type of non-canonical speech:
child-produced speech. Since child-produced speech differs
from adult-produced speech due to its less canonical pro-
nunciations, greater variability in pitch and duration, and the
presence of predictable phonological errors, processing this
speech could be more difficult for adults. We examined par-
ticipants’ word recognition using a two-picture VisualWorld
paradigm across three experiments.We focused on the role of
prediction by varying the child-specificity of the target items
and manipulating the background noise in which speech was
presented: no background noise, pink noise (artificial noise),
and real-world noise (noise from children’s homes). Our
main research questions focused on how adults processed
speech from children, and the role of top-down processing
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Fig. 4 Experiment 3: corrected proportion of looking to the target over
time based on condition. Each line represents one Speaker-Age and
Item-Type condition mean, and shaded ribbons show 95% confidence
intervals using a normal distribution, smoothed using a span of 0.25.
The x-axis shows the time since word onset in milliseconds (ms) and
the y-axis indicates the proportion of target looking; -2000 to -1500-ms
(blue vertical lines) is the baseline preferencewindowof analysis, target

word happened at 0 ms, 200–2000 ms (green vertical lines) is the time
window for analysis. The grey horizontal line indicates 0 change from
baseline looking. Overall, this graph shows that participants increased
their looking time fastest for generic items produced by adults for female
speech, and reached the highest peak for child-specific items produced
by children for male speech. See Supplementals for looking time graph
with overlaid model predictions

and prediction in comprehending child-produced speech in
silence and background noise. We were particularly inter-
ested inwhether Speaker-Agewould interactwith Item-Type,
as we expected that participants would increase target look-
ing most when the speaker and item matched (i.e., children
produced sentences directing to child-specific items).

In Experiment 1, when participants heard adult- and child-
produced speech without background noise, we found an
interaction between Speaker-Age and Item-Type, such that
participants increased their looking time more and faster
when adults produced generic items, and least when chil-
dren produced generic items. These patterns are consistent
with previous research (Borovsky & Creel, 2014) suggesting
that participants integrated expectations about the speaker
and what was being said. This is also in line with research
showing that unpredictable or incongruent words in con-
text are more challenging to process (Delong et al., 2011;
Schwanenflugel&Shoben, 1985). InExperiment 2,we found

different patterns of results for female and male speech.
For female speech, participants increased their looking time
more and faster for adult relative to child speech, but did
not show effects of generic or child-specific items. For male
speech, however, participants actually increased their look-
ing time more and faster for child relative to adult speech,
and for generic relative to child-specific items. In Experi-
ment 3, we added real-world background noise to the target
sentences. Once again, results differed by speaker gender.
For female speech, participants increased their target look-
ing more and faster for adult speech, and for generic items.
For male speech, participants exhibited the opposite pat-
tern, increasing their target looking more and faster for child
speech and child-specific items. Below, we discuss these
results in more detail, focusing on two key effects related to
speaker gender: (1) different effects of background noise and
(2) listener’s use of contextual cues to support word recog-
nition.
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Table 7 Experiment 3 growth
curve modeling results for male
speech condition. Ot1 refers to
linear term, Ot2 refers to
quadratic term, Ot3 refers to
cubic term, Ot4 refers to quartic
term

Term β̂ 95% CI t df p

Intercept 0.09 [0.05, 0.14] 4.02 40.47 < .001

Ot1 0.53 [0.49, 0.56] 29.23 85,349.01 < .001

Ot2 -0.09 [-0.13, -0.06] -5.23 85,349.01 < .001

Ot3 -0.10 [-0.13, -0.06] -5.33 85,349.01 < .001

Ot4 0.05 [0.02, 0.09] 3.03 85,349.01 .002

Speaker contrast1 0.04 [0.04, 0.05] 23.39 85,353.14 < .001

Type contrast1 0.03 [0.00, 0.07] 1.98 22 .060

Ot1 × Speaker contrast1 0.27 [0.23, 0.30] 14.87 85,349.01 < .001

Ot2 × Speaker contrast1 -0.13 [-0.17, -0.10] -7.34 85,349.01 < .001

Ot3 × Speaker contrast1 0.00 [-0.04, 0.03] -0.27 85,349.01 .785

Ot4 × Speaker contrast1 0.03 [0.00, 0.07] 1.91 85,349.01 .057

Ot1 × Type contrast1 0.09 [0.06, 0.13] 5.10 85,349.01 < .001

Ot2 × Type contrast1 -0.04 [-0.08, -0.01] -2.30 85,349.01 .022

Ot3 × Type contrast1 -0.01 [-0.04, 0.03] -0.52 85,349.01 .602

Ot4 × Type contrast1 0.00 [-0.04, 0.03] -0.18 85,349.01 .860

Speaker contrast1 × Type contrast1 -0.02 [-0.03, -0.02] -12.65 85,349.76 < .001

Ot1 × Speaker contrast1 × Type contrast1 0.03 [-0.01, 0.06] 1.59 85,349.01 .112

Ot2 × Speaker contrast1 × Type contrast1 -0.05 [-0.08, -0.01] -2.53 85,349.01 .011

Ot3 × Speaker contrast1 × Type contrast1 -0.01 [-0.05, 0.02] -0.59 85,349.01 .554

Ot4 × Speaker contrast1 × Type contrast1 0.03 [0.00, 0.07] 1.94 85,349.01 .052

Speaker gender influences masking effects in noise

Starting with female speech, adding background noise
resulted in the expected pattern of results: child-produced
speech was more difficult to process than adult-produced
speech. Participants lookedmore and faster to the targetwhen
it was labeled by an adult female speaker, suggesting that
adult-produced speechmaybe easier for youngadult listeners
to process, possibly because it is more canonical and/or more
familiar to listeners. This pattern was consistent for both the
pink background noise and the real-world background noise,
suggesting that the type of background noise did not influ-
ence theprocessingof female speech.These results alignwith
prior research on the challenges of processing non-canonical
speech. Studies on accented speech, for example, have sug-
gested that non-canonical pronunciations can impair spoken
word recognition (Adank et al., 2009; Clarke & Garrett,
2004) and require more cognitive resources during compre-
hension (Van Engen& Peelle, 2014).While participants may
have been able to overcome these challenges in silence, the
presence of background noise may have increased the cog-
nitive load, making child speech more difficult to process,
a pattern also observed in studies on accented speech in
noise (Adank et al., 2009; Van Engen, 2010). However, these
effects were small, as direct comparisons of looking time
across experiments were not significantly lower for female
speech in noise relative to female speech in silence. Whether
this small difficulty is due to reduced familiarity or because

it also requires more cognitive resources remains an open
question for future research.

Comparing the male and female speech condition reveals
a different pattern of results. In silence, there were no overall
differences in performance betweenmale and female speech.
If anything, participants reached slightly higher peaks in the
male speech condition relative to the female speech condi-
tion, suggesting that the male speakers used here were not, at
baseline, more challenging to comprehend. However, when
background noise was added, adult male speech became
significantly more challenging for listeners than all other
speaker types (female adult, female child, male child), across
both types of noise. One possible explanation for this pattern
is variation in the pitch of the speakers’ voices (see Supple-
mentals for Table showing pitch of stimuli across speakers,
and reporting statistical comparisons). Prior research finds
that higher-pitched voices (like those of our female and child
speakers here) may be easier to understand in noisy envi-
ronments (Bradlow et al., 1996). In contrast, lower-pitched
voices may be more masked by background noise, poten-
tially contributing to the observed difficulties with adult male
speech2. This pattern was the same in both types of back-
ground noise, even though we tried to equate task difficulty
across speaker-gender by creating real-world background
noise that included different-gender voices, which have been
found to increase sensitivity to speech detection in noise (Lei-

2 See Supplementals for an analysis of speaker’s Formant values
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bold et al., 2018). Importantly, these effects emerged despite
similar transcription accuracy for male and female speech in
real-world noise (see Supplemental Materials).

Taken together, these findings suggest that male adult
speech (or the male adult speaker used here specifically) is
more difficult to comprehendwhen embedded in background
noise. Critically, however, individuals do not exclusively hear
speech from female speakers, despite an over-reliance on
female speech stimuli in the developmental (Holtz & Pap-
ineau, 2024) and adult literature (Strand, 1999). This finding
thus highlights the importance of broadening our stimuli to
represent a variety of real-world experiences (across speaker
gender, age, and background noises), as patterns of results
may differ across these variables.

Top-down use of context supports speech
recognition

Building on the observed gender differences in process-
ing speech in noise, we next discuss whether listeners used
contextual cues, such as speaker identity and environmen-
tal noise, to engage in top-down predictive processing and
recognize speech. In Experiment 1, listeners used the con-
gruence between Speaker-Age and Item-Type to facilitate
word recognition, showing higher peaks in target looking for
speaker–item pairings that aligned with their expectations
(e.g., adults naming generic items, children naming child-
specific items). This finding suggests that listeners integrate
contextual expectations even in silence (see alsoVanBerkum
et al., 2008).

However, in the presence of background noise, the effects
of these contextual cues became more nuanced. For female
speech, background noise resulted in a main effect of
Speaker-Age: participants showed smaller increases in target
looking for child speech compared to adult speech. However,
background noise did not significantly reduce speech recog-
nition overall. This suggests that in this relatively simple
task, and with higher-pitched female voices, listeners were
able to separate the target speech from background noise and
sustain performance (Calandruccio & Smiljanic, 2012). We
had also predicted that real-world background noise might
serve as a cue for the presence of children and allow lis-
teners to engage in top-down predictions, particularly when
children produced child-specific items. However, when par-
ticipants listened to female speakers, we found no evidence
that real-world background noise facilitated processing of
child-produced speech, child-specific items, or child-specific
items produced by children. Regardless of noise condition,
listeners continued to show longer looking times for adult
speech and generic items.

The most notable context effects emerged in the male-
speech condition, particularly when comparing Experi-
ments 2 and 3. While there were no differences in increases

in target looking for adult and child-produced speech in
silence, participants increased their target looking more for
child-produced than adult-produced speech in both types of
background noise (as discussed above). Crucially, they also
showed sensitivity to the predictive value of background
noise. In Experiment 2 (pink noise), where background noise
was uninformative, listeners lookedmore to generic items. In
contrast, in Experiment 3, when background noise could be
used predictively, participants increased their target looking
more for child-specific items overall, with the effect being
stronger when child-specific items were produced by a child
speaker. We interpret this pattern as support for the notion
that we connect what is being said to what is happening in the
real world, which enables us to make predictions about the
upcoming speech (Altmann & Mirković, 2009). The effect
of real-world background noise in boosting recognition of
child-produced speech and also child-specific items is con-
sistentwith literature suggesting that contextual cues canhelp
speech processing (e.g., Bronkhorst, 2000; Van Engen et al.,
2012).

These findings suggest that listeners can use real-world
background noise to make top-down predictions about
upcoming speech.Anopenquestion remains as towhypartic-
ipants engaged in predictive processing only for male speech
and not for female speech. Female speech showed less sus-
ceptibility to masking effects of noise, potentially reducing
the need for top-downpredictive processing. In contrast,male
speech, especially adultmale speech,wasmore susceptible to
masking and thus harder to understand in noise. This greater
difficulty may have prompted listeners to rely more heavily
on external contextual cues, such as real-world background
noise, to make predictions. If so, this would suggest that
listeners turn to top-down cues more when acoustic informa-
tion is degraded. In addition, listeners may have a general
bias that female adults are already more related to children,
and thus real-world background noise did not further boost
this. For example, research in implicit behavioral associa-
tions finds that females are more strongly associated with the
role of “mom” than males are with the role of “dad” (Park
et al., 2010) and that social stereotypes influence language
processing (Grant et al., 2020). While we might expect par-
ticipants to then be better at attending to child-specific items
when female speakers produce them, it is possible that they
were already integrating this information in their process-
ing (despite lower overall increases in target looking), and
thus it did not further shift performance. This gender-specific
pattern contrasts with findings from earlier research, which
sometimes reports no differences in processing male versus
female speech (e.g., Brown & Gaskell, 2014). Future work
could further investigate this by directly manipulating signal
quality with different gender speakers and examining when
listeners shift from relying on the speech signal itself to using
contextual expectations.
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More generally, our results highlight the role of top-down
processing in speech comprehension. In top-down process-
ing, we use context, linguistic knowledge, and predictions to
understand spoken words, in this case, to make sense of non-
canonical speech and speech in noise. These mechanisms
in auditory perception are similar to figure-ground organi-
zation in vision, where perceptual systems extract relevant
information from noisy backgrounds (Peterson & Gibson,
1993). Similar processes underlie auditory segregation: both
low-level acoustic features and high-level knowledge (e.g.,
attention,memory, expectations) contribute to identifying the
speech signal (Peterson, 2014). Also, consistent with the idea
of “child-directed listening” (Meylan et al., 2023), our find-
ings suggest that listenersmay have shifted their expectations
when cued by real-world context. In this case, background
noise from children’s environments may have primed lis-
teners to expect the presence of children and child-related
content. This kind of top-down processing has been found to
be beneficial for understanding spoken language, especially
under challenging conditions. For example, Hannemann et
al. (2007) presented participants with acoustically degraded
speech (i.e., unintelligible signals) and found that they used
top-down knowledge to improve comprehension. Sohoglu et
al. (2012) also explored how listeners use prior knowledge
and context in understanding speech and demonstrated that
listeners rely on top-down processing for speech perception,
especially in degraded auditory signals that are more chal-
lenging to understand. However, our results suggest that the
degree towhich listeners engage in predictive processingmay
vary depending on both the speech signal and listener biases.
This opens the door to future research examining when and
why listeners rely on top-down information, particularly in
relation to social expectations about speakers (i.e., who tends
to talk about what).

Beyond pitch: interpretingmale child speech in
noisy environments

While our findings show that listeners might use top-down
expectations to integrate contextual cues like background
noise and speaker identity, these effects may also be shaped
by additional factors. In particular, the question is why there
was a bigger cost for processing male child-produced speech
in noise, despite it actually being higher in mean pitch rela-
tive to the female adult and child speaker (see Supplementals
for table showing pitch of stimuli and formant values across
speakers, and reporting statistical comparisons). If speakers’
mean pitch predicted intelligibility in noise, then we would
have expected male child speech to be the easiest to pro-
cess. Since this was not the case, it seems unlikely that the
observed difficulty can be fully explained by the extent to
which background noise masked each speaker.

One possibility is that speaker gender interacted with pre-
sentation order, such that participants who heard male adult
speech first were primed to not expect children, however
if we test for an interaction between speaker gender and
counterbalancing order, the interaction is not significant in
Experiment 2 (t(37) = 0.87, p = .390) or Experiment 3
(t(34) = 1.83, p = .075). It is also possible that partici-
pants are able to use information in addition to fundamental
frequency to estimate a speaker’s gender, even for children.
In fact, Barreda and Assmann (2021) found that listeners
can distinguish between male and female child voices even
when acoustic properties do not differ between them. This
aligns with findings from Koenig (2018), which found that
adults use both prescriptive and descriptive gender stereo-
types about children, indicating that gendered expectations
may influence how listeners interpret speech beyond acous-
tic cues. To probe whether stereotypes are playing a role
in processing in this task, future research should vary the
type of background noise (e.g. sports bar vs. children’s
home environments) and could collect information about par-
ticipants’ stereotypes or essentialist views to test whether
individuals who are more likely to implicitly link females
with the role of “mom” also perform differently in pro-
cessing speech from female speakers about child-specific
items.

Individual and developmental differences in
processing child speech

While our findings emphasize the role of top-down expec-
tations and social biases, individual differences in listener
experience and developmental stage may also shape speech
processing, especially in noisy conditions or processing non-
canonical speech. As an exploratory analysis, based on
previous studies suggesting that having prior information
or experience about the parameters of a signal can increase
its detectability (e.g., Wiley, 2017), we tested whether par-
ticipants’ previous experience with children affected their
performance. Across all three experiments, participants’
self-reported frequency of interaction with children did not
improve our best model fit, suggesting that the amount of
participants’ experience with children did not influence their
performance. This finding is in linewithYu et al. (2023); who
had found that only experience with a specific child’s speech
(i.e. their own child) increased intelligibility. However, ear-
lier studies on native listeners’ comprehension of accented
speech suggested that prior experience improves perceptual
accuracy (e.g., Clarke & Garrett, 2004). As noted above, it is
possible that the child speakers used in this experiment were
not particularly challenging, and thus experience is not neces-
sary for relatively easy processing.Wemight expect different
results for children who are diagnosed with speech imped-
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iments or language delays. Another possibility is that some
listeners may rely more on prior experience than others. For
example, listening in a second language may be more chal-
lenging overall, and particularly so in noisy environments
(Rogers et al., 2006) or for non-canonical speech. Testing
second language listeners with and without experience with
child-produced speech may allow for insight into whether
prior experience is more important for some listeners than
others.

Lastly, an open question is how this pattern of results
would extend to developmental populations. Previous research
suggests that toddlers comprehend adult-produced speech
better than that of same-age peers (Cooper et al., 2018).
However, previous research does not consider the role of
experience with speech produced by other children, or
with processing adult- and child-produced speech in noise.
Many children have siblings or attend daycare and, conse-
quently, some children could have more experience with
child-produced speech thanothers. Similarly, children’s envi-
ronments often include background noise, whether that be
a busy daycare classroom, or background noise in homes
like that used in Experiment 3. We look forward to future
research exploring children’s ability to process and recognize
child-produced speech in silence as well as in the presence
of real-world background noise.

Conclusion

Taken together, we found that child-produced speech is not
generally more challenging to process. Instead, challenges
arise when comparing child-produced speech to female
adult-produced speech in noise. Within and across exper-
iments, we also manipulated Item-Type and background
noise, finding that listeners can consider who is speaking
when making predictions about what they will say, but they
do not always use this information to improve processing.
Specifically, our findings suggest that background noise may
improve processing by allowing listeners to make predic-
tions (i.e., real-world noise), but that participants may only
do this under very challenging conditions, such as male
speech. While unplanned, a primary take-away from this
study is that the field needs to use representative stimuli,
across different categories of speakers, as results may not
generalize between male and female speakers, or child and
adult speakers. Together, these patterns of results inform our
theories of speech perception, highlighting the complicated
interplay between the characteristics of speech and speaker,
environmental conditions, and listener expectations in speech
processing.
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