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Abstract—Fully automatic localization of lumbar vertebrae
from clinical X-ray images is very challenging due to the
variation of X-ray quality, scale, contrast, number of visible
vertebrae, etc. To overcome these challenges, we present a
novel framework, where we accelerate a scale-invariant object
detection method using Support Vector Machines (SVM) trained
on Histogram of Oriented Gradients (HOG) features and
segmenting a fine vertebra contour using Gradient Vector Flow
(GVF) based snake model. Support Vector Machines trained on
HOG features are now an object detection standard in many
perception fields and have demonstrated good performance on
medical images as well. However, the computational complex-
ity and lack of robustness brought by rescaling the original
images have prevented its applicability. The proposed multi-
stage detection framework uses lower-level detection result to
determine the rescaling regions to reduce the region of interest,
thereby decreasing the execution time. We further refine the
detection result by segmenting the contour of vertebra using
GVF snake, where we use edge detection techniques to increase
the robustness of the GVF snake. Finally, we experimentally
demonstrate the effectiveness of this framework using a large
set of clinical X-ray images.

I. INTRODUCTION

Although spinal sagittal morphology has been defined for
quite some time in medical field, it was only until recently
that both researchers and clinicians have put forth more effort
to understand and measure newly defined parameters. When
specialists consider the automation of the Spine Measurement
Software system (SMS), they consider vertebrae detection
and localization technology as a way to produce a detailed
3-D model of the spine with all the appropriate measurements
required to make efficient and accurate decisions on patient
care. However, due to the variations in terms of machine
settings, patient location, patient posture, X-ray intensities,
number of visible vertebrae, etc., in X-ray images, full
automation of this task can be very challenging. Fig. 1 shows
some of the challenging variations that exist in our dataset.

Spine image analysis has been studied extensively on
different medical image modalities. There are a number of
methods proposed for MRI images [1], [3], [4]. However,
algorithms used for MRI images can hardly migrate to X-ray
images, due to the loss of information on coronal and axial
slices and low contrast. In recent studies, a few X-ray based
methods have been proposed. Eduardo et al [6] proposed a

Fig. 1. Variations of lateral lumbar X-ray images. From these images we can
see that the intensities varies considerably; the curvature of the spine differs;
image contrasts is low; and the number of visible vertebrae differs. These
factors are some of the challenges for fully automatic vertebrae detection
and segmentation.

semi-automatic method, where center points of vertebrae are
localized manually followed by a neural network on Gabor
magnitude response to classify the pixels into vertebra pixels
and non-vertebra pixels. Dong et al [7] also proposed a semi-
automatic method, where they first manually locate the first
and last visible vertebrae and based on which they utilized
a graphical model to further analyze the image. Moura et al
[5] proposed an intensity based method. However, intensities
vary a lot in our dataset (as they are from different x-ray
machines) and would not be a robust feature. Fabian et al
[2] present a fully automatic vertebra detection method using
edge polygonal approximation and SVM trained on SIFT
description. However, their edge polygonal approximation
depends on the Canny edge detector, which results in unstable
performance due to contrast differences between images.
SIFT descriptor is also unstable for the same reason. In this
paper, we demonstrate a novel framework, where we use a
multi-stage SVM classifier on HOG features to robustly de-
tect the vertebrae, acquire the bounding boxes, and use GVF
snake to further detect and refine the contour of the vertebrae
based on dynamically refined Canny edge detection result
and hough filter result. Our method is significantly faster
than existing methods. Object detection has been a widely
studied area in computer vision and Linear SVM trained on
HOG features has become popular due to its performance and
robust theory [8]. However, the computational complexity



due to rescaling the original image has been a major draw-
back. In medical image analysis, this drawback is accentuated
by its demand for high accuracy. Moreover, the visible
vertebrae number varies from image to image so that the size
of the bounding box cannot be determined or assumed before-
hand. Most of the X-ray images have more than 3,000,000
pixels. Thus, having a finely rescaled image pyramid can
be computationally expensive and infeasible. To overcome
this issue, we propose a multi-stage detection method where
we take advantage of object classification result to reduce
the rescale region significantly. Another contribution of our
framework is that instead of using GVF snake models on
original image, we improved the robustness of the method by
detecting the edge within the bounding box first and perform
GVF snake deformation on the edge detection results. Canny
edge detection has been used widely in edge detection
application, however, selection of gaussian kernel can affect
the signal-to-noise ratio considerably. Thus, we dynamically
choose the gaussian kernel in our framework to eliminate
the bias and use hough filter to further process the edge to
decrease the noise level. The method is described in detail
in the following section.

II. VERTEBRAE DETECTION AND SEGMENTATION
A. Multi-stage vertebrae detection

Fig. 2 and 3 outline our proposed multi-stage framework.
The first stage of our framework is to use parts of the object
as the target, i.e.,, train SVM classifier on HOG features
of object parts. SVM trained on HOG features are now an
object detection standard in many perception fields and one
of the key advantage of HOG feature is that it is invarient to
geometric and photometric transformation. In this step, we
use object parts as target. Since the original image scale is
unpredictable, we assume that object parts are easier to detect
than the whole object. We iterate the first stage until we
find object parts. In our experiments, object parts can almost
always be found in the first iteration without rescaling the
image. When using multiple iterations, we rescaled the image
to a smaller size in every iteration until we found object parts.
At this point, we will have a set of small parts represented
by rectangular boxes. Let’s say it is P = {p1,p2,...,pn}
where P is the set of the parts and n represent total number
of object parts. Each p;, (i = 1,2,...,n) can be represented
by two diagonal corner points, say ((x;1,v:1), (Ti2, Yi2)),
where x and y represent the (x,y) coordinates. We denote
the iteration number in the first stage as ¢tr;. At the end
of the first stage, we compute the large bounding box
containing all parts in P, where we set the maximum and
minimum (2, y) coordinates as the ROI, which we represent
as ROI = ((Tmin, Ymin), (Tmaz, Ymaz))- From here, we will
focus on ROI and the rescaling in next stage will be done
on ROI instead of the entire image.

The second stage of the framework rescale the RO/ to find
the entire object. Due to the largely reduced region, the time
spend on this stage can decrease substantially. Let’s say S is
the image size, which is typically above 2000x2000 pixels
and we can represent the size of ROI as:

Iteratively rescale
the image until
object parts are

detected

determine the Region
of Interest based on
detected objects

Low level detection

High level detection

If no objects are
detected in this scale,
go back to first stage

Fig. 2. Work-flow of our fast detection algorithm. First stage (on the left)
iterate until object parts are detected and use the bounding box of the result
as ROI. Second stage (on the right) uses full object detection.

Fig. 3. Multi-stage detection. Image on the left illustrates the first stage
of detection, using object parts as samples. Middle image illustrates how
the rescaling has reduced to ROI, thus reducing classification time; and the
image on the right shows the detection result added back to the original
scale.
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where ¢ € [0, 1] is a constant, typically around 0.5 in our
case. The time complexity of the entire framework can be
represented by

itry , itry+itre .
T=> T 'S)+ Y T 'eS), (2)
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where T'(s) is a detection time on an image with size s; itro
is the iteration number in stage two; « is rescaling factor.
However, in conventional method the time taken is:
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Subtracting the above equation 1 from 3, we will have the
saved time, which is
1try+itro ) )
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Since each image pixel is computed multiple times, let’s

assume T'(s) o s", where (n > 1). Then above equation
will be
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We can see that with the increase of n, i.e. when the reuse
time of a pixel in HOG feature extraction phase increase or
with the decrease of ¢, i.e. the region of interest is small
enough, the execution time decreases.

Fig. 4. Variations of L2 vertebra. We can see that although it is the same
vertebra structure, it appears very different. Some vertebrae are tilted to the
right and some are flat.

ext

Fig. 5. Variations of L5 vertebra. Similar to the previous figure, L5 vertebra
appears to be very different for distinct patients.

Apart from the fast framework, inspired by exemplar-
SVMs proposed by Malisiewicz [9], we categorize the verte-
bra into three classes: right-tilted, flat and left-tilted classes
instead of using different labels for each vertebra or using one
label for all vertebrae. The reason is that the classification is
based on spine structure, for example one classifier for each
L1,L.2,..,L5 vertebra can decrease the detection accuracy as
the appearance of the same vertebra can vary a lot due to
different patient posture, image scale, etc. Furthermore, HOG
feature does not have sufficient support for rotation of rigid
objects, which makes it hard to correctly describe different
states of the same vertebra. Fig. 4 and Fig. 5 show examples
of the same vertebra appearing very differently on different
images. One classifier for all vertebrae is also inadequate and
not robust, as we know that each vertebra appears differently,
even in one image. Hence, we classify objects into three
classes based on their rotations.

B. Vertebra segmentation

In this part, we utilize the bounding box obtained from
the first phase to extract fine contour of vertebrae. GVF
has been used widely due to its good performance in
snake deformation. Alomari et al [3] demonstrated good
performance of GVF based vertebrae disc segmentation by
using joint model. The difference is that since X-ray images
are not as clear as MRI images, we need to do further
preprocessing. We first detect the vertebrae edge using Canny
edge detection and hough filter. Since Canny edge detection
is very sensitive to the contrast of the image, we implemented

a dynamic gaussian kernel size determination method to deal
with various X-ray quality issues, where we increase the

Fig. 6. Workflow of processing image within bounding box. Image on the
left shows the initial Canny edge detection result and the middle image shows
the final Canny edge detection result after dynamically chosen gaussian
kernel size and the image on the right shows the hough filter result, which
is used in the following GVF snake.
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Fig. 7. Final GVF snake result.

kernel size until the foreground and background ratio hits a
certain threshold. Thus, we can make sure that the resulting
image will have as little noise as possible. After the edge
detection, we use hough filter to further eliminate some minor
noises. Fig. 6 shows the process of this step.

After we obtain a relatively nice contour, we use GVF
snake model to build the complete close contour. One ad-
vantage of snake deformation on GVF in our example is that
most of the time, because of the blurriness of the image, it
is not easy to get a close contour, which makes the other
methods such as using hough filter alone, insufficient. As
shown in Fig 6, the contour is not closed circle. If we
use other methods, such as hough filter to detect horizontal
and vertical lines, we will not be able to produce a close
contour, and hough filter also gives false positives, such as
the horizontal lines shown on the middle right side of the
image. Thus, we use GVF snake deformation to deal with
missing edges. Fig. 7 shows the GVF snake results for entire
lumbar vertebrae.
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TABLE I
DETECTION RATE

dataset number 0 1 2 3 4 5 6

w
=)}
(3]
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True positive 4123

Total number of vertebrae 5 5 4 5 6 4 4

TABLE II
EXECUTION TIME COMPARISON.
our method | conventional method
Avg time (min) per image 3.1 5.4
Avg iteration number 2.1 2.3

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. Data and environment

To conduct our experiment, we used 30 clinical lateral lum-
bar X-ray images with varying parameters, in terms of num-
ber of visible vertebrae, intensities, noise level, etc. In order
to accommodate the scale invariant feature of our framework,
we analyzed the vertebrae size of all our samples, and chose
the smallest size as our HOG window size, which is 200x300
pixels. For HOG settings, we used 8 orientations, 16x16 cell
size and 1x1 block size. Linear kernel is used for SVM
as suggested in [8]. Lower level SVM classifier is trained
on 4127 positive samples and 72452 negative samples, with
200x300 image size. Higher level SVM classifier is trained
on 175 flat, 247 right-tilted, 175 left-tilted, 22563 negative
samples. GVF iteration number is 80, snake parameters are
set as dmaxr = 20,dmin = 5 for snake interpolation,
a = 0.05,86 = 0,v = 1,k = 0.5,iteration = 35, and
step — size = 5 for snake deformation. The experiment is
conducted on a 2GHz Intel Core 17 machine with 8GB, 1600
MHz DDR3 machine on serialized program.

B. Detection rate

We demonstrate the quality of our detection method based
on true positives numbers versus total visible vertebrae
number. Table I shows the performance of each individual
test data. The average true positive rate achieved was 75%.

C. Execution Time

As shown theoretically in Section II-A, we further
compared the time consumption of our detection framework
and conventional detection framework. We trained on 20
clinical images and tested on 18 images with an average of 5
vertebrae, 4,342,388 pixels. Table II shows the average time
consumption of our method versus conventional method
without accelerated framework . From the data we see that,
even though the average number of iterations are similar,
the average execution time is reduced significantly. Average
iteration number differs because the region of interest is
changing for our method, thus the alignment issue comes
into affect.

IV. CONCLUSION

In this paper, we proposed a novel and fast scale-invariant
framework for detecting and segmenting vertebrae from X-
ray images. This framework uses multi-stage detection to
reduce the rescaling region for HOG feature based SVM
classifier and we theoretically and experimentally demon-
strated the time saved by using this new framework without
compromising the accuracy of the classifier. Our framework
easily handles different scaling issues in X-ray images. This
framework also utilized an exemplar-SVMs like classifier to
better represent the vertebrae. In the segmentation phase,
we implemented dynamic selection of gaussian kernel in
Canny edge detection phase, which ensures the signal-to-
noise ratio and we further reduced the noise by using hough
filter. Using edge detection results has given GVF snake
better performance, especially when the X-ray images have
poor contrast. Even though we have largely speeded up the
algorithm, we still have room for improving the execution
time. As our future work, we will be focusing on algorithmi-
cally improving the speed of framework as well as utilizing
parallel computing techniques to improve the performance.
We will further improve the robustness of this method by
experimenting with more data.
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