Annotation of the *Photorhabdus luminescens* Genome at Locus Tag PLU_RS1965

Leah Stucke and Lawrence Grisanti East Aurora High School and the Western New York Genetics in Research and Health Care Partnership

Abstract

A gene from the microorganism *Photorhabdus luminescens* (PLU_RS18965) was annotated using the collaborative genome annotation website GENI-ACT. The GenBank proposed gene product name for the gene was assessed in terms of the general genomic information, amino acid sequence-based similarity data, structure-based evidence from the amino acid sequence, cellular localization data, and potential alternative open reading frames. Through the use of various programs, including BLAST, CDD, T-Coffee, WebLogo, TMHMM, and other programs, the gene was annotated and found to match the proposed product names. The GenBank proposed a gene product name for the gene and the results did not differ significantly from the proposed gene annotation for the genes in the group and as such, the gene appears to have been correctly annotated by the r database. According to gene annotation websites and software gene PLU RS18965 was correctly named as a chaperone protein.

Introduction

The genes that was studied was from the genome of Photorhabdus luminescens. In order to properly investigate the properties of this gene, a variety of software tools were employed. These included BLAST, CDD, T-Coffee, WebLogo, TMHMM, among others. By using these platforms, a higher educational purpose has been served. Knowledge regarding the similarity of genomes as well as a general understanding of bioinformatics has resulted in response to this educational stimulus.

Gene PLU_R18965 (location shown in Figure 1) was computer pipeline annotated previously using some of the software listed above and those services proposed gene product names for the protein. However, to investigate the relative characteristics of these genes, research on organisms that showed similarity in sequences was conducted to fully understand the traits of the genes in Photorhabdus luminescens. Research involving the enzymatic function of the gene, the duplication and degradation of the gene, the horizontal gene transfer and the RNA family of the gene has not been conducted.

To further understand the genes of Photorhabdus *luminescens*, certain aspects were investigated. These include sequence based and structure based similarity, as well as alternative reading and cellular localization. The results and findings from the research done will be expounded upon in the following content.

4486k	4487k	4488k	4489k	4490k	4491k
PLU_RS18950	PLU_RS18955	PLU_RS18960	<u>.u_RS18965</u>	PLU_RS18970) PLU_RS18975 PLU_RS18980

University at Buffalo The State University of New York

Methods

Modules of the GENI-ACT (<u>http://www.geni-act.org</u>) were used to complete Photorhabdus luminescens genome annotation. The modules are described below:

Modules	Activities	Questions Investigated
Basic Information	DNA Coordinates and Sequence, Protein Sequence	What is the sequence of the gene and protein? Where is it located in the genome?
Sequence-Based Similarity	Blast, CDD, T- Coffee, WebLogo	How similar is the protein under investigation to other proteins in GenBank?
Structure-Based Similarity	TIGRfam, Pfam, PDB	What functional domains are present in the protein under investigation?
Cellular Localization	Gram Stain, TMHMM, SignalP, LipoP, Psortb, Phobius	Is the protein under investigation located in the cytoplasm, secreted, in the periplasm or embedded in the cell membrane or cell wall?
Alternative Open Reading Frame	IMG/M, BLAST, T- Coffee	In what process or structure is the protein under investigation involved?

Results

PLU RS18965 Annotation Findings

Through the annotation of gene PLU RS18965 and the extensive studies comparing its proposed gene product name and the results from various software it was found that the gene functions as a chaperone protein. The initial proposed product name for this gene was a chaperone protein which assists in the covalent folding or unfolding of macromolecule structures. The sequences of the protein were analyzed in comparison to { sequences of similar molecules through BLAST. The top BLAST hit was a chaperedoxin located in Escherichia coli K-12. A chaperedoxin has a combination of a chaperone protein and redox-protective functions. A sequence alignment was conducted through the T-Coffee software and was used to create a WebLogo (Figure 2).

The areas of protein PLU_RS18965 alternate between a high number of matching amino acids or having no amino acids match to areas with little conservation of amino acid, examples of this can be seen in the T-Coffee multiple sequence alignment and the WebLogo and the concentration of amino acids in certain regions exemplified in the analyses of these software calculations.

Figure 1. (Left) The image to the left shows the location of gene PLU_RS18965 (highlighted in yellow) in its gene neighborhood in the organism. 1

• Figure 2. The image on the right is a of portion the WebLogo made from the analysis of the genes sequences and their similarity to other sequences. WebLogo #2-The WebLogo has sections that have very few letters and sections that have letters, the many sections that contain many letters have a good balance of types of amino acids. They often have two amino acids per row, one in a small quantity and the other with a larger quantity, but there are often also many smaller quantities of proteins in a row, showing negligible in the conservation regions of protein PLU_RS18965

After determining how the PLU RS1965 sequence aligned to similar genes, it was analyzed for the structural similarity to other genes. Gene PLU_RS18965 was entered into CDD, TIGRFAM, Pfam, and PDB software for further analysis. The data analysis from these programs showed that the gene being studied was a chaperone protein that also has redox functions.

Figure 3. Gene PLU RS18965 results from CDD analysis that show the gene is a chaperone protein with thioredoxin-like domains.

Query se				100 TPR repeat (TPR repe		200 TPR rej	•eat <	TPR repeat <		
Specific Superfan					чы YbbN supe						
				Search for sim	-		Refine sea	rch 2			
listof	domain hits			Search for sim	nar uomam ar	cintectures	- Relifie Sea				0
	Accession				Desci	ription				Interval	E-value
		tive re	gulator of GroEL, con	tains thioredoxin-						1-284	2.57e-131
			10	20	30	40	50	60	70	80	
			*								
	gi 18271743		MSVENIVNINESN				-	-			
	C00:C0G3118	20	MAAPGIKDVTEAN	FEQEVIQSSREV	PVLVDFWAP	WCGPCKQLTP	LEKLAAETKG	KFKLAKVN	CDAEPMVAAQF	evéste aa	
			90	100	110	120	130	140	150	160	
			*	.*	···· ····	*	* *		.*	*	
	-		TVYLFQNGQPVDG				-	-	-		
	Cdd:C0G3118	100	TVYAFKDGQPVDG	FQGAQPESQLR	FLDKVLPAE	EEEALAEAKEI	IEAEDFGEAA	PLLK <mark>QAL</mark> Q	AAPENSEAKLL	LAECLL 179	
			170	180	190	200	210	220	230	240	
			*								
	ai 18271743	160	ALNRSEDAEAVLK								
	-		AAGDVEAAQAILA					-			
			250	260		280					
			*		-	-					
	-		FGHLRKDLTAADG			-					
	C00:C0G3118	260	LALLRRDRGFEDG	EAKKILLELFEA	AFGPADPLVL	ATKKKLTSLL	304				
uro	3 60	no	PLU I		065 r	oculta	e from		D an	alveid	e the
					フレフ ト	COUL			ום עו	a12313	ο μισ

The protein PLU_RS18965, which BLAST results identify as a chaperone protein, is most likely found in the cytoplasm since TMHMM and Phobius did not predict it to have transmembrane helixes and PSORTb determined it had the highest probability of being a cytoplasmic protein.

For the protein PLU_RS18965 the collaborative GenBank website GENI-ACT had the start codon located correctly, an open reading frame is found in the beginning of the protein sequence in the results from IGM/M software. The diagramed results show the start codon regions in yellow and the Shine-Dalgarno regions in teal, showing the areas of the open reading frames that correctly matched the expected regions from the previous gene annotation (Figure 4).

Figure 4 first porti the IGM/ results o alternate reading

The gene from the microorganism Photorhabdus *luminescens* identified by locus tag PLU RS18965 has been analyzed through various software including BLAST, WebLogo, and CDD to examine the sequences and structure of the protein and to confirm the gene's proposed product name. We hypothesize this gene was annotated correctly as a chaperone protein. However the gene also contains thioredoxin and redox like capabilities. YbbN has been proposed to act as a chaperone or co-chaperone that aids in heat stress response and DNA synthesis in *E. coli* (Lin and Wilson, 2011).

Conclusion

The GENI-ACT proposed gene products did not differ significantly from the proposed gene annotations for each of the genes and as such, the genes appear to be correctly annotated by the computer database.

PLU RS18965 Proposed Gene Product Name: Co-Chaperone YbbN Pipeline Annotated Gene Product Name: Co-Chaperone YbbN Changes made: None

Notes: PLU RS18965 is a chaperone protein that has some redox qualities

References

Lin and Wilson. 2011. J. Biol. Chem. jbc.M111.238741. doi:10.1074/jbc.M111.238741

4. The tion of	F1 F2 F3 GC	N T E Q T K W Y N L K V K K I T S I Y L I L S K Q S G T T * K L R K * P Q S I * Y * A N K V V Q L E S * E N N L N L F N 31313032313030292928282828282828282828282828282828282
1/M of	4488218 4488218 GC F6 F5 F4	A A T A C T G A G C A A A C A A G T G G T A C A A C T T G A A A G T T A A G A A A A T A A C C T C A A T C T A T T A T T A T G A C T C G T T T G T T C A C C A T G T T G A A C T T T C A A T T C T T T T A T T G G A G T T A G A T A A T 69697068697070717171727272727272727272727272727272
e open frames.	F1 F2 F3 GC	I V P C D N Q I * E T N Y M L P T S I G S Y P A I T K F K R L I I C Y R P L L E R T L R * P N L R D * L Y V T D L Y W N 2725252729272729313131313133333131313131312929292931313131

Acknowledgments Supported by an NIH Science Education Partnership (SEPA) Award - R25GM129209