Annotation of Helicobacter pylori at Locus Tags HP0176, HP0071, HP0913, and HP0887

Gwenyth Cooley, Kyle George, Edward Janes, Reilly Quinn, and Laura O'Donnell Attica High School-Attica, NY and The Western New York Genetics in Research and Health Care Partnership

Abstract

A group of genes from the microorganism Helicobacter pylori were annotated using the collaborative genome annotation website GENI-ACT. The GenBank proposed gene product name for each gene was assessed in terms of the general genomic information, amino acid sequence-based similarity data, structure-based evidence from the amino acid sequence, and cellular localization data. The GenBank proposed gene product name did not differ significantly from the proposed gene annotation for each of the genes in the group and as such, the genes appear to be correctly annotated by the computer database.

Introduction

Helicobacter pylori, also known as H. pylori, is a gramnegative, spiral-shaped bacterium that are found in mucus layers in the lining of the stomach. H. pylori moves by the means of multiple flagella and use them to burrow into the mucus lining of the stomach.

Helicobacter pylori is commonly found in the majority of people. About two-thirds of the world's population has it in their body, but can remain dormant. If the bacteria do become active, they can cause sores, called ulcers, in the lining of your stomach and the duodenum. *H. pylori* causes more than 90% of duodenal ulcers and up to 80% of gastric ulcers which can sometimes lead to stomach cancer. The bacteria releases an enzyme called urease which reduces stomach acidity, allowing the bacteria to survive in the stomach.

There are many ways to test one for the presence of Helicobacter pylori including blood antibody tests, urea breath tests, stool antigen tests, and endoscopic biopsies. Although the bacteria can cause problems, there are antibiotics that can kill the bacteria and help the ulcers heal. The bacteria may be passed from person to person by direct

contact of saliva, vomit, or fecal matter. It can also be spread by consuming contaminated food and water.

Colored scanning electron micrograph of H pylori or surface of gastric cells web.stanford.edu

Methods

Modules of the GENI-ACT (http://www.geni-act.org/) were used to complete Helicobacter pylori genome annotation. The modules are described below:

Modules	Activities	Questions Investigated
Module 1- Basic Information Module	DNA Coordinates and Sequence, Protein Sequence	What is the sequence of my gene and protein? Where is it located in the genome?
Module 2- Sequence-Based Similarity Data	Blast, CDD, T-Coffee, WebLogo	Is my sequence similar to other sequences in Genbank?
Module 3- Structure-Based Evidence	TIGRfam, Pfam, PDB	Are there functional domains in my protein?
Module 4- Cellular Localization Data	Gram Stain, TMHMM, SignalP, PSORT, Phobius	Is my protein in the cytoplasm, secreted or embedded in the membrane?

Results

Gene Locus: HP0176		
Basic Information	DNA Coordinates	182781183704
	DNA Length	924 nt
	Amino Acid Sequence Length	307 aa
Sequence-based Similarity		COG0191:Fba-Fructose/tagatose
	COGS	bisphosphate aldolase
		[Carbohydrate transport and
		metabolism]
	T-Coffee	well conserved at the beginning
	I-Collee	not the end
	Web-Logo	fairly well conserved throughout
		TIGR01859 fruc_bis_ald_: class
	TIGRFAMs	II fructose-1,6-bisphosphate
Structure based		aldolase
Structure-based Evidence	PFAMs	pfam01116 F_bP_aldolase
	HMM Logo Key Residues	D84 H85 G177 H207
	DDD	class II fructose-biphosphate
	PDB	aldolase
Cellular Localization	Transmembrane Helices	none
	Signal Peptide	none
	PSORTb Final Prediction	cytoplasmic

Helicobacter pylori HP0176:

COG, PFAM, TIGRFAM, and PDB data supports HP0176 to be a fructosebisphosphate aldolase, an enzyme that breaks down fructose 1,6bisphosphate into DHAP and glyceraldehyde 3 phosphate during glycolysis for energy metabolism. Cellular localization data predicts this protein to function in the cytoplasm.

Figure 1 – WebLogo data for HP0176 shows that $\frac{3}{2}$ the protein has areas that are fairly well conserved throughout.

Gene Locus: HP1166 **DNA Coordinates** 1230660..1232297 **Basic Information** 1638 nt **DNA Length** 545 aa Amino Acid Sequence Length No significant hits COGS Sequence-based **T-Coffee** No orthologs Similarity Web-Logo No orthologs TIGRFAMs No significant hits PF00342: Phosphoglucose **PFAMs** Structure-based isomerase **Evidence** HMM Logo Key Residues No significant residues **PDB** pGI glucosephosphate isomerase **Transmembrane Helices** none **Cellular Localization** Signal Peptide none **PSORTb Final Prediction** cytoplasmic

otein which converts glucose 6-phosphate into fructose 6-phosphate during colysis for energy metabolism. Cellular localization data predicts that 1166 functions in the cytoplasm.

Gene Locus: HP1275				
Basic Information	DNA Coordinates	13502061351585		
	DNA Length	1380 nt		
	Amino Acid Sequence Length	459 aa		
	COGS	COG1109: ManB-		
		Phosphomannomutase		
		[Carbohydrate transport and		
Secure head		metabolism]		
Sequence-based	T-Coffee	Not well conserved in the		
Similarity		beginning and end. Well		
		conserved in the middle.		
	Wahlaga	Mostly well-conserved		
	Web-Logo	throughout		
	TIGRFAMs	TIGR03990:Arch_GImM;		
		catalyzes the conversion of		
		glucosamine-6-phosphate to		
		glucosamine-1-phosphate.		
Structure-based	PFAMs	pfam02878:PGM_PMM_I;		
Evidence		Phosphoglucomutase/		
LVIGENCE		phosphomannomutase,		
		alpha/beta/alpha domain I		
	HMM Logo Key Residues	D48		
	PDB	PMM/PGM with ribose 1-		
		phosphate		
Cellular Localization	Transmembrane Helices	none		
	Signal Peptide	none		
	PSORTb Final Prediction	cytoplasmic		

Helicobacter pylori HP1275:

COG, TIGRFAM, PFAM, and PDB data supports HP1275 to be a phosphomannomutase, an enzyme that transports phosphate groups between sugar substrates, glucosamine-6 and glucosamine-1 in glycolysis for energy metabolism. Cellular localization data predicts that HP1275 functions in the cytoplasm.

Figure 2 – WebLogo data for HP1275 shows that the protein has many well conserved areas throughout.

Basic

Sequer

Struct

Cellular I

Conclusion

The GENI-ACT proposed gene product did not differ significantly from the proposed gene annotation for each of the genes in the group and as such, the genes appear to be correctly annotated by the computer database. All proteins annotated seem to be involved with energy metabolism in H. pylori.

Gene Locu HP017 HP116 HP127 HP135

References

H. pylori Bacteria Infection: Symptoms, Diagnosis, Treatment, Prevention. (n.d.). Retrieved from https://www.webmd.com/digestive-disorders/h-pylorihelicobacter-pylori#1

Helicobacter Pylori. (n.d.). Retrieved from https://www.cedarssinai.org/health-library/diseases-and-conditions/h/helicobacter-pylori.html

Gene Locus: HP1358		
nformation	DNA Coordinates	complement (14471561448028)
	DNA Length	873 nt
	Amino Acid Sequence Length	290aa
		COG0158: Fbp- Fructose-1,6
nce-based nilarity	COGS	bisphosphatase
		[Carbohydrate transport and
		metabolism]
	T-Coffee	well conserved in the beginning,
		not as well conserved at the end
	Web-Logo	not well conserved
ure-based idence	TIGRFAMs	no significant hits
	PFAMs	pfam00316: Fructose-1-6-
		bisphosphate, N-terminal domain
	HMM Logo Key Residues	G49, G58, P110, Y158
	PDB	sedoheptulose-1,7-
		bisphosphatase
Localization	Transmembrane Helices	none
	Signal Peptide	none
	PSORTb Final Prediction	Cytoplasmic

Helicobacter pylori HP1358:

COG, PFAM, and PDB data supports HP1358 to be a fructose-1,6bisphosphatase, an enzyme that converts fructose-1,6-bisphosphate to fructose 6-phosphate in glycolysis for energy metabolism. Cellular localization data predicts that HP1358 functions in the cytoplasm.

e Is	Geni-Act Gene Products	Proposed Annotation
76	Fructose-bisphosphate aldolase	Fructose-bisphosphate aldolase
66	Phosphoglucose isomerase	Phosphoglucose isomerase
75	Phosphomannomutase	Phosphomannomutase
58	Fructose-1,6-bisphosphatase	Fructose-1,6-bisphosphatase
	0	

Acknowledgments

Supported by an NIH Science Education Partnership (SEPA) Award - R250D010536

www.buffalo.edu