Genome Annotation

MODULE 2 PART -II

Rama Dey-Rao, PhD

Clinical Assistant Professor
Biotechnical and Clinical Lab Sciences
Senior Scientist
Department of Microbiology \& Immunology, SUNY at Buffalo dey@buffalo.edu

Sequence-based Similarity

4 TOOLS

1. BLAST

The Basic Local Alignment Search Tool (BLAST) tool finds regions of local similarity between sequences and calculates the statistical significance of matches
2. CDD

Conserved Domain Database Search (CDD) finds sequence similarity with genes in conserved orthologous groups (COGs).
3. T-Coffee

Tree based Consistency Objective Function For alignment Evaluation (T-Coffee) is a multiple sequence alignment program that aligns a set of homologous (similar) sequences
4. WebLogo

WebLogo is a program that enables easy creation of sequence logos from the multiple sequence alignments

Conserved Domain Database Search

```
CDD
click on the CDD search results at the top of the BLAST results page
COG number (top hit)
    save for annotation report
COG name
    save for annotation report
Score
    score
E-value
    save for annotation report
Significant COG number (second hit)
    save for annotation report
COG name
    save for annotation report
Score
    score
E-value
    save for annotation report
T-Coffee
go to http://www.ebi.ac.uk/Tools/msa/tcoffee/
Sequences used for alignment
    sequences
Multiple sequence alignment
    alignment
WebLogo
go to http://weblogo.berkeley.edu/
Sequence logo
```


Protein Domains COG (Clusters of Orthologous Groups) Conserved Domain Database

$>$ Sequence -based domains in proteins have a particular structure that is related to function.
$>$ Can be seen as building blocks put together in different ways in different proteins.
> Parts of the proteins with similar and vital functions are conserved-clusters of ortholog groups in conserved domain database.
$>$ When a very significant COG hit is observed for the query gene it can be interpreted as a strong likelihood that the protein has the same function.

BLAST RESULTS PAGE- Swissprot database

Both a Conserved Domain Database and BLAST searches are done simultaneously.

| RID | 631JYCW7016 (Expires on 02-12 21:27 pm) |
| ---: | :--- | :--- |
| Query ID | Icl\|Query_44273 |
| Description | KSED_RS00005-Ksed_00010-aa sequence |
| Molecule type | amino acid |
| Query Length | 506 |

Database Name swissprot
Description Non-redundant UniProtKB/SwissProt sequences Program BLASTP 2.8.1 $+>$ Citation

Other reports: \downarrow Search Summary [Taxonomy reports] [Distance tree of results] [Multiple alianment] [MSA viewer]
Wew Analyze your query with SmartBLAST
Graphic Summary CDD search
Θ Show Conserved Domains
Putative conserved domains have been detected, click on the image below for detailed results.

Done

COG - Clusters of Orthologous Groups

If there are no hits, write "no significant hits" in notebook If there are several hits, click the [+] sign next to the hits and record

COG - Clusters of Orthologous Groups

COG - Clusters of Orthologous Groups

$\xi_{\text {ncıl }}$	Conserved Protein ${ }_{\text {ona }}$ Domain Family
Nosmaman	
-	
8 ncbi	Conserved Protein Domain Family Bac_DnaA_C
couss bec oman c spmerfamiv	

Sequence-based Similarity Data Module

4 TOOLS

1. BLAST
2. CDD
3. T-Coffee
4. WebLogo

The Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between sequences and calculates the statistical significance of matches

Conserved Domain Database Search (CDD) finds sequence similarity with genes in conserved orthologous groups (COGs).

Tree based Consistency Objective Function For alignment Evaluation (T-Coffee) is a multiple sequence alignment program that aligns a set of homologous (similar) sequences

WebLogo is a program that enables easy creation of sequence logos from the multiple sequence alignments

T-Coffee

Tree-based Consistency Objective Function for alignment Evaluation Multiple sequence alignment tool

- Across evolution amino acids are likely to be conserved because they are important for structure and function.
- One way to measure conservation is to align multiple similar protein sequences from related organisms (orthologs)

[^0]
In Notebook

T-Coffee

go to http://www.ebi.ac.uk/Tools/msa/tcoffeel
Sequences used for alignment

```
sequences
```

Multiple sequence alignment

RECALL: What are orthologs?

- Homologs
- Orthologs
- Genes that share similarity in function but are found in different organisms

- Paralogs -Genes aluplicated within a species

Evolutionary Pressure

How and where are the orthologs to compare?

Go back to BLAST Search from nr database

Sequences producing significant alignments:

Select: All None Selected:10
${ }_{i}^{\hat{i}}$ Alignments 固Download \sim GenPept Graphics Distance tree of results Multiple alignment

Description	Max score	Total score	Query cover	E value	Ident	Accession
	1031	1031	99\%	0.0	99\%	WP 012801520.1
	610	610	99\%	0.0	63\%	WP 022920049.1
	589	589	98\%	0.0	60\%	WP 010147278.1
	565	565	97\%	0.0	59\%	WP 022923463.1
	552	552	96\%	0.0	58\%	WP 009776970.1
	539	539	96\%	0.0	56\%	WP 029212190.1
asphaera elonqatal	537	537	98\%	0.0	55\%	WP 010851794.1
	536	536	98\%	0.0	58\%	WP 013882065.1
	531	531	97\%	0.0	59\%	WP 009482734.1
	528	528	97\%	2e-180	57\%	WP 029253865.1
	526	526	98\%	$7 \mathrm{e}-180$	56\%	WP 012865049.1

Click on 10 different significant orthologs from the list
Do NOT use the top 10 without checking out if they are from different organisms if available Sometimes the same organism appear multiple times (different strains of the same organism)

Remember: you may need to do an "exclusion blast" if you don't find enough different organisms in your routine nr blast search!

BLAST Search from nr database- Why?

Click the Download pull down menu at the top of the page and make sure the FASTA (complete sequence) link is clicked -Continue Copy and paste all 10 sequences including Kytococcus sedentarius in a word document. Change font to Courier New 10 if needed. Edit Kytococcus FASTA header

Paste all sequences in your notebook and EDIT

4
>ND_012801520.1 chromosomal replication initiator protein Daad [Kyt8caccus seciantariug] MSQTPDDHATAIWQEAMVHLQGAGLAPRDIGVLRLATLVGLIEGTALLAVKYDHVKDAVEGHLREDVSTAIREVLDRDIR LAVSVDPDAVSAAQEEAAPPAPSPADEDDPATGEGPLSTAVDGVVEKHEGSSPARAGESVAPATTASLTATNSSPGVERD YSALNHKYTEDTEVLGSSNRFAHARATAVAEAPARAYNPLFIYGGSGLGKTHLLHAIGHYARTLDSSVRVKYVNSEEETN QFINAVSAGQANAFQRQYRDVDVLLIDDIQFLQGKEQTMEEFEHI FNTLHNSEKQIVITSDQPPKKLSGEAERMRSREEK
 GGDSGQITPTMILEETAGYFVISVEEIQ LGEDRRVYDEVSELTSIIRKKAARGR >NP_022920049.1 chromosomal

Select all letters before the word Kytococcus and delete pekingense]
MTSQSPAESAEVWQRVVSQLESQGVTARDRAFLRLTQLVGLLDTTALLAVPYQHTKETLETTLRQPIVDALAGELGHDVR LAITVDEDLRRQVEDEGDPAPGPAVTEQVPSDPDRTPYRSNGAGPGEPRSDGHRTPSGAVQTASAEDARLNPKYTFDTFV SGSSNRFAHAASLAVAESPARAYNPLFIYGESGLGKTHLLHAIGHYARSLYPGVRVRYVNSEEFTNDEINSIRDDKAGAF QRRYRNVDFLLVDDIQFLQGKEQTVEEEFHTFNTLHNSEKQVVITSDQPPKRLSGFAERMRSRFEWGLLTDVQPPDLETR IAILKKKAAQEGMQLPDEVLELIGSKISTNIRELEGALIRVTAFASLSSTPPDAMLASHVLKDIIPNSESAMITVPTIMA EVADYFQISNDDLCGTSRSRTLVNARQIAMYLCRELTDLSLPKIGQEEGGRDHTTVAHAERKIRQLIGERRALYDQITEL TGIIRKASAR
$>$ RIK14929.1 chromosomal replication initiator protein Dzaz̉ [Acidobacteria, bacterium] MTHDPSPAASAEVWERVVAELDQGVTARDRAFLRLTRLVGLLDGTVLIAVPYQHTKDTLETTLRQPIVSALAEELGHDVR LAITVDESLRQELKAEEGAVTPPQVAPAGGSTPYPVEVEPTSVPPVAEPTPRRAGATQGTGPDEARLNPKYSEDTFVSGS SNRFAHARSLAVZESPARAYNPLFIYGESGLGKTHLLHAIGHYARSLYPGVRVRYVNSEEFTNDEINSIRNQEAGAFQRR YRNVDFLLIDDIQFMQGKEQTVEEFEHTFNTLHNSEKQVVITSDQPPKRLSGEAERIRSREEWGLLTDVQPPDLETRIAI LRKKAAQEGMNTPDEVLELIASRITTNIRELEGALIRVTAFASLSSEPLTAELAAHVLKDIIPSGEARAIGVPTIIAEVS DYEQITRDELCGTSRSRSLVNARQIAMYLCRELTELSLPKIGQEFGGRDHTTVMHAERKIRQLMGERRALYDQITDLTGI IRKASAR
\rightarrow NP 010147278.1 chromosomal replication initiator protein Drak [SerinjggGcus prafundi] MSQP̄STDSGDTWRRVVSELEDKGLGAREKAFLRLTTMVGVLDSTVLLAVPYPHTKEMLETTLRQPIVDLLSRELDREVRL AITVDDDVRQRVEDEADDEADEDAQTRESLTRPASQPSSSAGAGVPGPSGNGIPRPATPAGPAVTGAADEARLNPKYSFD TFVSGPSNREAHAASLAVAESPARAYNPLFIYGESGLGKTHLLHAIGHYARKLYPGVRVRYVNSEEFTNDFINSIRDDKA GAFQRRYRNVDFLLVDDIQFLQGKEQTVEEFFHTENTLHNSEKQVVITSDQPRKRLSGFRERMRSREEWGLITDVQPPDL ETRIAILRKKAAQEGMQLPDEVLEHIASRITTNIRELEGALIRVTAFASLSSQPADADLARHVLKDIVPGSDTAQITVST IIREVSEYFQISIDELCGTSRSRTLVNARQIAMYLCRELTDLSLPKIGQEFGGRDHTTVMHAERKIRAQIGERRALYDQI AELTGTIRRASQR

The headers should look like this

柬

Abstract

$>$ [Kxtecescus sedentraxius] MSQTPDDHATAIWQEAMVHIQGAGLAPRDIGVLRLATLVGLLEGTALLAVKYDHVKDAVEGHLREDVSTALAEVLDRDIR LAVSVDPDAVSAAQEEAAPPAPSPADEDDPATGEGPLSTAVDGAVEKHEGSSPARAGESVAPATTASLTATNSSPGVERD YSALNHKYTFDTFULGSSNRFAHRAATAVAEAPARAYNPLFIYGGSGLGKTHLLHAIGHYARTLDSSVRVKYYNSEEFTN QFINAVSAGQANAFQRQYRDVDVLLIDDIQFLQGKEQTMEEFFHTFNTLHNSEKQIVITSDQPPKKLSGFAERMRSREEW GLITDVQPPDLETRIAILRRKAAADKLDIPDDVLHLIASKISSNIRELEGALIRVTAFASLSGSPLDEYLARTVLKDVMP GGDSGQITPTMILEETAGYFVISVEEIQGASRSRNLTRARQIAMYLCRELTDLSLPKIGKEFGGRDHTTVMHAERKIKQL LGEDRRVYDEVSELTSIIRKKAARGR MTSQSPAESAEVWQRVVSQLESQGVTARDRAFLRLTQLVGLLDTTALLAVPYQHTKETLETTLRQPIVDALAGELGHDVR LAITVDEDLRRQVEDEGDPAPGPAVTEQVPSDPDRTPYRSNGGGPEPRSDGHRTPSGAVQTASAEDARLNPKYTFDTFV SGSSNRFAHPASLAVAESPARAYNPLFIYGESGLGKTHLLHAIGHYARSLYPGVRVRYVNSEEFTNDFINSIRDDKAGAF QRRYRNVDFLLVDDIQFLQGKEQTVEEFFHTFNTLHNSEKQVVITSDQPPKRLSGFAERMRSRFEWGLLTDVQPPDLETR IAILKKKAAQEGMQLPDEVLELIGSKISTNIRELEGALIRVTAFASLSSTPPDAALASHVLKDIIPNSESAAITVPTIMA EVADYFQISNDDLCGTSRSRTLVNARQIAMYLCRELTDLSLPKIGQEFGGRDHTTVMHAERKIRQLIGERRALYDQITEL TGIIRKASAR $>$ [dididokactexia bacterium] MTHDPSPAASAEVWERVVAELDQGVTARDRAFLRLTRLVGLLDGIVLLAVPYQHTKDTLETTLRQPIVSALAEELGHDVR LAITVDESLRQELKAEEGAVTPPQVAPAGGSTPYPVEVEPTSVPPVAEPTPRRAGATQGTGPDEARLNPKYSFDTFVSGS SNRFAHARASLAVAESPARAYNPLFIYGESGLGKTHLLHAIGHYARSLYPGVRVRYVNSEEFTNDFINSIRNOEAGAFQRR YRNVDFLLIDDIQRMQGKEQTVEEFFHTFNTLHNSEKQVVITSDQPPKRISGFAERMRSRFEWGLLTDVQPPDLETRIAI LRKKAMOEGMNTPDEVLELIASRITTNIRELEGALIRVTAFASLSSEPLTAELAAMVLKDIIPSGEAAAIGVPTIIAEVS DYFQITRDELCGTSRSRSLVNARQIAMYLCRELTELSLPKIGQEFGGRDHTTVMHAERKIRQLMGERRALYDQITDLTGI IRKASAR $>$ [Serinicoccus pzoffundi] MSQPSTDSGDTWRRVVSELEDKGLGAREKAFLRLTTMVGVLDSTVLLAVPYPHTKEMLETTLRQPIVDLLSRELDREVRI AITVDDDVRQRVEDEADDEADEDAQTRESLTRPASQPSSSAGAGVPGPSGNGIPRPATPAGPAVTGAADEARLNPKYSFD TFVSGPSNRFAHAASLAVAESPARAYNPLFIYGESGLGKTHLLHAIGHYARKLYPGVRVRYYNSEEFTNDFINSIRDDKA GAFQRRYRNVDFLLVDDIQFLQGKEQTVEEFFHTFNTLHNSEKQVVITSDQPPKRLSGFAERMRSRFEWGLLIDVQPPDL ETRIAILRKKAAQEGMOLPDEVLEHIASRITTNIRELEGALIRVIAFASLSSQPADADLAMHVLKDIVPGSDTAQITVST IIREVSEYFQISIDELCGTSRSRTLVNARQIAMYLCRELTDLSLPKIGQEFGGRDHTTVMHAERKIRAQIGERRALYDQI AELTGIIRRASQR

Click on Link: T-Coffee tools

http://www.ebi.ac.uk/Tools/msa/tcoffee/

Multiple Sequence Alignment (msa) Copy / paste this alignment into your lab notebookCourier New 9

Results for job tcoffee-l20190215-165604-0351-23150635-p1m

Alignments

Result Summary Guide Tree
Phylogenetic Tree
Submission Detail
Download Alignment File Show Colors View result with Jalview Send to Simple
CLUSTAL in (1.83) multiple sequence aligraent

[Acidobacteria

(Arsenicicoccus
[Cellulomonas
[Janibacter
[Knoellia
(Kribbia
(Rytococcus
[Ornithininicrobiun
[Serinicoccus
(Tetrasphaera

[Acidobacteria

(Arsenicicoccus
[Cellulomonas
[Janibacter
[Knoelliz
(Kribbia
(Rytococcus
[Ornithinimicrobium
[Serinicoccus
(Tetrasphaera

MTHDPsPa asaevicrvvacid--QGITaRDRaFLRLTRLVGLLDGTVLL MSQ-PST-DTGDTKRRVVSELED-KGLGAREKAFLRLTTMVGLDSTVLL MSG-QDD-QLSQWHBAMAQLEVSPDITPRQLAEVRLAKPLGLLDGTMLL MSE-PSE-DLDAVMRSLLANVSH-DGVPAPHRAFLSLAREVGLLDGTALV MD---------QINRTTLDALDS-DGIFVQQRAFLSLAKLVGLLDETALI MGG-TDE-DEAOIKNAILDTLDA-DGVFVIERAFLQIGKLVGLLDGTAVI MSOTPDD-HATATNQEMMHLQG-AGLAPRDIGVLRLATLVGLLEGTALL MTSQSPA-ESAEVWQRTVSOLES-QGITARDRAFLRLTQLVGLLDTTALL MSQ-PST-DSGDTWRRVVSELED-KGLGAREKAFLRLTTMVGIDSTVLL MD---------QITRTTLDALDN-DGIFVQQRaFLSLaRLVGLLDDTALI

AVPYQHTKOTLETTLRQPIVSALAEELGHDVRLAITVDESLRQELKAE-E AVPYPATKEMLETTLRQPIVDLLSRELDREVRLAITVDDDVRQRVEDE-A aVGMDLTKDYLETRVRQEVTDALAAALGRDAREAITVDPSLDGAGDPS-L AVPNNYCKTYVERALRVFUTQAFSAHYGQDVRLAVTVDPDLDDTEDEL-? AVPNDETKDIVETRLRDRVIETLRSQLGHDVRLAVIVDPSLGDAFVLVPA AVPNDESKQEVEHRLROHVTSALSAQLGSEVRLAVTVDSSLAEGGDTD-T AVKYDHFKDAVEGHLREDVSTALAEVLDRDIRLAVSVDPDAVBAAOEE-A AVPYQHTKETLETTLRQPIVDALAGELGHDVRLAITVDEDLRRQVEDE-G AVPYPHTKEMLETTLRQPIVDLLSRELDREVRLAITVDDDVRQRVEDE-A aVPNDETKDIVETRLRERVIETLSSQLGHDVRLAVTVDQSLADAPAPE-A

Repeating blocks of 50 amino acid stretches

Asterix : (*), conserved amino acid in all sequences

Colon (:), A position of the MSA composed of residues having the same physicochemical properties

Dot (.), indicates the column of MSA for which semiconserved substitutions are observed

Return to T-COFFEE Results - show color

CLUSTAL W (1.83) multiple sequence alignment
gi|497130903|ref|WP_009482734.1| gi|497462772|ref|WP_009776970.1| gi|497833122|ref|WP_010147278.1| gi|499072896|ref|WP_010851794.1| gi|502479361|ref|WP_012801520.1| gi|502628385|ref|WP_012865049.1| gi|503647989|ref|WP_013882065.1| gi| $551300082|r e f| W P^{-} 022920049.1 \mid$ gi|656266264|ref|WP_029212190.1| gi| $656321871|r e f| W P_{-}^{-} 029253865.1 \mid$
gi|497130903|ref|WP_009482734.1| gi|497462772|ref|WP_009776970.1| gi|497833122|ref|WP_010147278.1| gi|499072896|ref|WP_010851794.1| gi| $502479361 \mid$ reflWP_012801520.1| gi|502628385|ref|WP_012865049.1| gi|503647989|ref|WP_013882065.1| gi| $551300082|r e f| W_{2}^{-} 022920049.1 \mid$ gi| $656266264|r e f| W P 029212190.1 \mid$ gi| $656321871|r e f| W_{2}^{-} 029253865.1 \mid$

MSVSGESSITPSEPGRIWGATLRALDQ-AGIPAPQRAFLRQATLVGVLDI M--------------DQIWRTILDALDS-DGIPVQQRAFLSLAKLVGLLDE MSQ------PSTDSGDTWRRVVSELED-KGLGAREKAFLRLTTMVGVLDS MAD---------ASMTSVWVRILRALDR-EGVSHQERAFLSITRLAGVLDE MSQI------PDDHATAIWQEAMVHLQG-AGLAPRDIGVLRLATLVGLLEG MAI------TDDNISEIWKQAIAELEASPDITPRQLAFVKLAKPLGLFDG MAQ-------DEELSRVWGHVVITLEESPDITQRQLAFVRLAQPLGLLDG MTSQ-----SPAESAEVWQRVVSQLES-QGVIARDRAFLRLIQLVGLLDT MTD-------AQVDVPRVWRDTLRALES-GGISAQHRGFLRLSRLVGLLEG MPA-------AEVSIDEVWEQTIATLGSNPHMTRRQMGYVKMAKPRAVFEG

TALIAVPDDFTKEIVESRARDRLVRALTDQVGHEVRLAVTVDASLREQFA TALIAVPNDFTKDIVETRLRDRVTETLSSQLGHDVRLAVTVDHSLADVPV TVLLAVPYPHTKEMLETTLRQPIVDLLSRELDREVRLAITVDDDVRQRVE TALIAVPNDFSKDIVETRLRGRISGHLTAELDRPLRLAVTVDPSLAEAEP TALLAVKYDHVKDAVEGHLREDVSTALAEVLDRDIRLAVSVDPDAVSAAQ IVIIAVANDHTRDFLETRVRAEVVQALSNALGRDARFAITVDPELGFDEE TIILAVGNEYTKEYLETKVRAEVISALGSALGRDGRFAITVDPSLVDDAP TALLAVPYQHTKETLETTLRQPIVDALAGELGHDVRLAITVDEDLRRQVE TALIAVPNDYTRDIVEKRIRTELVAALQEQLGRDVRLAVTVDSSLELSEA NVFLAVPADHVRTFIESSLRDDLVEALTSVLGTEVRFAISVEPDMDVQPP . : :**

Arginine Asparagine Aspartic Acid Cysteine Glutamine Glutamic Acid Glycine Histidine Isoleucine Leucine
Lysine Methionine Phenylalanine Proline
Serine Threonine Tryptophan Tyrosine Valine
tamine

Arg Glu Q E E G H I L M M
F F P S T
W
W
Y

AVFPMILW	RED	Small (small+ hydrophobic (incl.aromatic - Y))
DE	BLUE	Acidic
RK	MAGENTA	Basic
STYHCNGQ	GREEN	Hydroxyl + Amine + Basic - Q
Others	Gray	

The colors give information about the amino acid

Sequence-based Similarity Data Module

4 TOOLS

1. BLAST
2. CDD
3. T-Coffee
```
The Basic Local Alignment Search Tool (BLAST) finds
regions of local similarity between sequences and
calculates the statistical significance of matches
Conserved Domain Database Search (CDD) finds
sequence similarity with genes in conserved orthologous
groups (COGs).
Tree based Consistency Objective Function For alignment
Evaluation (T-Coffee) is a multiple sequence alignment
program that aligns a set of homologous (similar )
sequences
```

4. WebLogo

WebLogo is a program that enables easy creation of sequence logos from the multiple sequence alignments

$\|_{\text {EELOCOCO}}$

- This is a program designed to enable easy creation of sequence logos from multiple sequence alignments.
- One simple graphic is generated.
- At least 10 sequences should be used.
- Save image as .png and attach to notebook.

Crooks GE, Hon G, Chandonia JM, Brenner SE WebLogo: A sequence logo generator, Genome Research, 14:1188-1190,

WebLogo

WebLogo

go to http://weblogo.berkeley.edu/
Sequence logo
+
logo image

Komments/observations about the Multiple Sequence Alignment Weblogge

Provide an overall summary of your findings from the Sequence Similarity Module in the box below.
\square

Be sure to save this document after completing the sequence-based information module!

Home page for WebLogo

Paste multiple alignment with top and bottom line intact

CLICK 32 so that aa are chopped in 32 bits and shown

Create \rightarrow Paste multiple alignment with top and bottom line intact

CLICK 32
aa are shown in repeating blocks of 32

Weblogo of the entire protein Save as a .png file. Upload into notebok

COLOR CODE

Polar amino acids
(G,S,T,Y,C,Q,N) : green

Basic (K,R,H) blue,

Acidic (D,E) red
Hydrophobic
(A,V,L,I,P,W,F,M) : black.

The most common residue at each position in the alignment will be the largest letter at that position.

The relative height of the stack of letters will be proportional to the \% conservation.

The relative widths of the stacks indicate the proportion of valid readings of nucleic bases or amino acids at that position.

The more gaps in the sequence at a specific position means a thinner stack.

[^0]: T-Coffee: A novel method for multiple sequence alignments. Notredame,Higgins,Heringa,JMB 302(205-217)2000
 T-Coffee is a freeware open source package distributed under the GNU public license
 T-Coffee Server is hosted by the Centre for Genomic Regulation (CRG) of Barcelona, SPAIN

