
Annotation of the *Kytococcus sedentarius* Genome at Locus Tags Ksed_RS05035 Ksed_RS05045 and Ksed_RS05050

Ryan Beckett, Jennie Mercilliott, Jessica Perdue, Abdulrahman Yassein, and Kate Johnston Niagara Falls High School, Niagara Falls New York and The Western New York Genetics in Research and Health Care Partnership

Abstract

Three genes from the microorganism *Kytococcus sedentarius* (Ksed_RS05035, Ksed_RS05045, and Ksed_RS05050) were annotated using the collaborative genome annotation website GENI-ACT. The Genbank proposed gene product name for each gene was assessed using its basic genomic information, amino acid sequence-based similarity data, structure-based evidence from the amino acid sequence, cellular localization data, potential alternative open reading frames, enzymatic function, presence or absence of gene duplication and degradation, the possibility of horizontal gene transfer. The original proposed gene product name did not differ significantly from the proposed gene annotation for each of the genes in the group and therefore the genes appear to be correctly annotated in the database.

Introduction

Kytococcus Sedentarius is an aerobic gram positive bacteria originally isolated from a marine environment (Sims et al., 2009). Its cells are spherical and in the form of tetrads that are groups in cubic packets (Sims et al., 2009). The optimal growth temperature is between 23-36°C (Sims et al., 2009). It is a bacterium of interest due to the diseases and conditions it has been linked to playing a role in causing. It is considered the cause of skin infections that degrade human calluses, endocarditis and hemorrhagic pneumonia (Sims et al., 2009).

Kytococcus Sedentarius can produce oligoketide antibiotics monensins A and B, and Kytococcus appear to have significant survival abilities when airborne (Folayan, A. et al., 2018). While the bacteria can cause life threatening illness, it is not clear how Kytococci enter the body, and they are typically resistant to penicillin G, methicillin, and isoaxazol penicillins (Folayan, A. et al., 2018). More studies are needed to help prevent and treat diseases caused by Kytococcus Sedentarius.

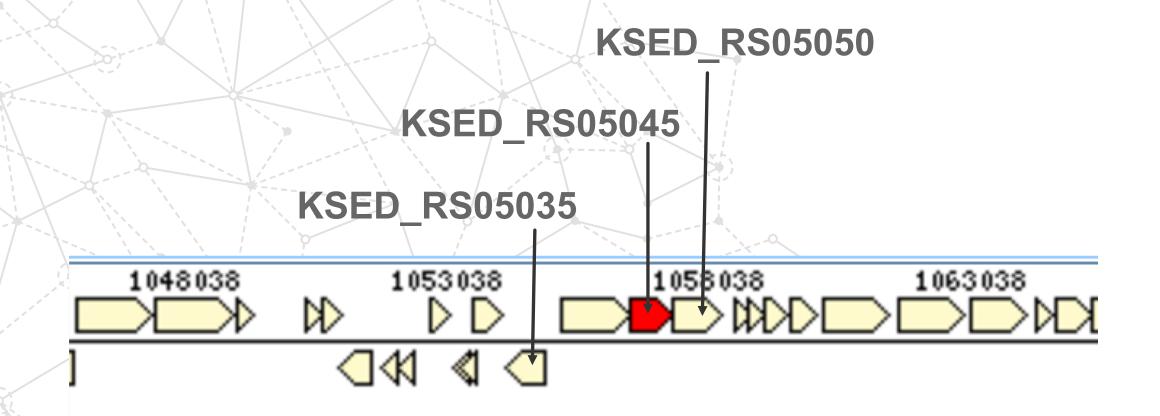


Figure 1 - The locus tags and relative position of the genes under investigation in this research

Methods

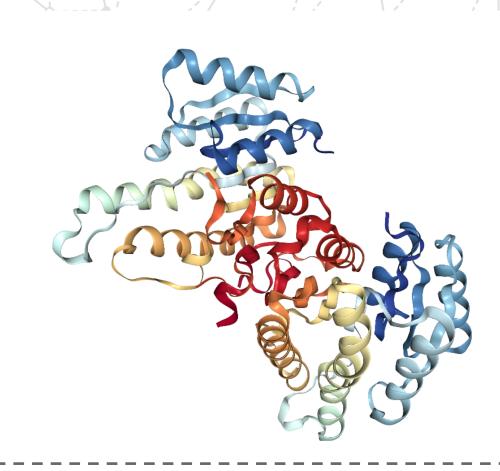
Modules of the GENI-ACT (http://www.geni-act.org/) were used to complete Kytococcus sedentarius genome annotation. The modules are described below:

Modules	Activities	Questions Investigated				
Module 1- Basic Information Module	DNA Coordinates and Sequence, Protein Sequence	What is the sequence of my gene and protein? Where is it located in the genome?				
Module 2- Sequence-Based Similarity Data	Blast, CDD, T-Coffee, WebLogo	Is my sequence similar to other sequences in Genbank?				
Module 3- Cellular Localization Data	Gram Stain, TMHMM, SignalP, PSORT, Phobius	Is my protein in the cytoplasm, secreted or embedded in the membrane?				
Module 4- Alternative Open Reading Frame	IMG Sequence Viewer For Alternate ORF Search	Has the amino acid sequence of my protein been called correctly by the computer?				
Module 5- Structure-Based Evidence	TIGRfam, Pfam, PDB	Are there functional domains in my protein?				
Module 6- Enzymatic Function	KEGG, MetaCyc, E.C. Number,	In what process does my protein take part?				
Module 7- Gene Duplication/ Gene Degradation	Paralog, Pseudogene	Are there other forms of my gene in the bacterium? Is my gene functional?				
Module 8- Evidence for Horizontal Gene Transfer	Phylogenetic Tree,	Has my gene co-evolved with other genes in the genome?				
Module 9- RNA	RFAM	Does my gene encode a functional RNA?				

Results

Ksed RS05035:

The original gene predicted by GENI-ACT was a Beta-Hydroxybutyrate Dehydrogenase. This gene product proposal was supported by the top BLAST hits for the amino acid sequence, and the presence of well-curated protein functional domains within the amino acid sequence. Its function appears to be to synthesize or degrade ketone bodies. Based on this annotation, the originally predicted gene of Beta-Hydroxybutyrate Dehydrogenase correlates with these findings.


Ksed_RS05045:

The initial proposed product of this gene by GENI-ACT was a type II secretion system protein F. This gene product proposal was consistent with the top BLAST hits for the amino acid sequence. The T-coffee showed alignment with the sequence. TMHMM and Phobius indicate that it functions as a transmembrane protein. And so, the proposed annotation is a type II secretion system protein F.

Ksed RS05050:

The initial proposed product of these genes by GENI-ACT was Flp pilus assembly protein TadB. This gene product matches the results from the BLAST sequence. The sequence obtained similar results between the T-Coffee and Web Logo sequences. This protein showed evidence of being a transmembrane protein. Every module completed supported the initial proposal that the gene is a Flp pilus assembly protein.

Figure 2 –
Ksed_RS05035 PDB
result produced this 3-D
model of the protein Dbeta-hydroxybutyrate
dehydrogenase from
Sinorhizobium meliloti

Fatty acid degradation

Acetoacetyl-CoAv

2.3.1.9

Acetyl-CoA

Acetyl-CoA

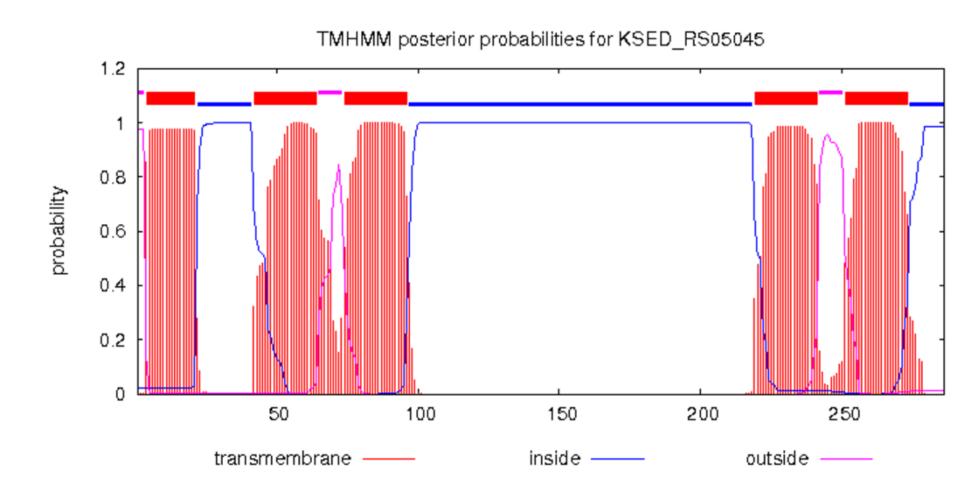
Glycolysis

Acetoacetate

Acetoacetate

Acetoacetate

Acetoacetate

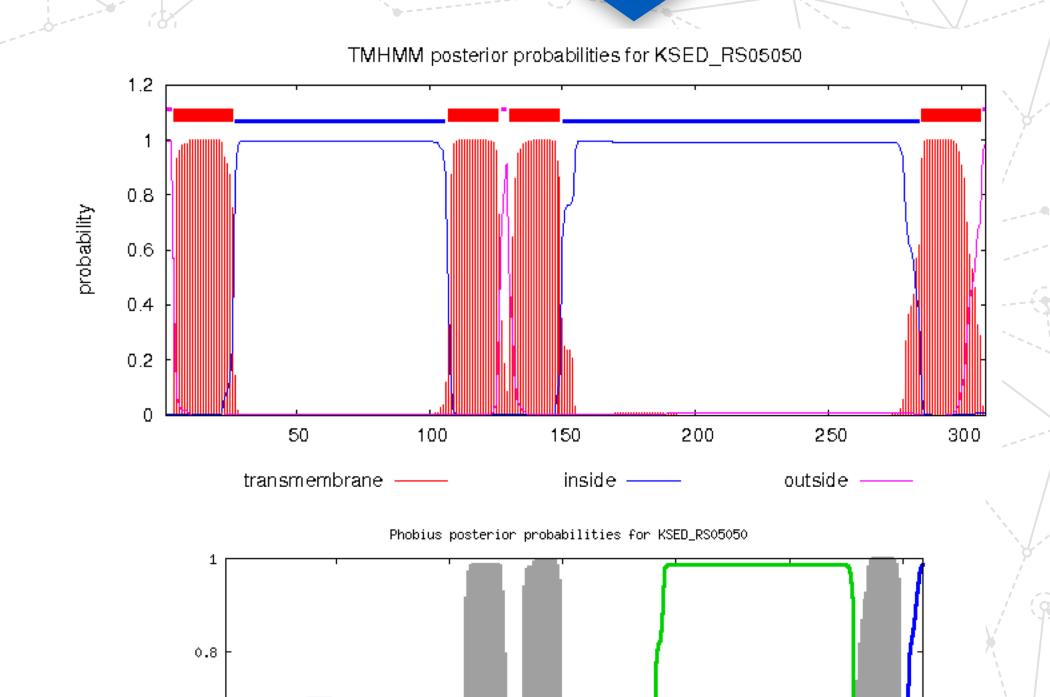

Acetoacetate

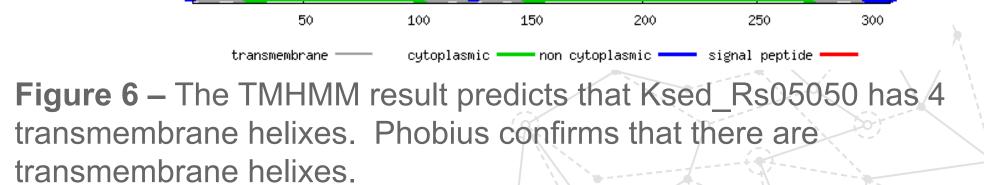
R)-3-Hydroxybutanoate

R)-3-Hydroxybutanoate

SYNTHESIS AND DEGRADATION OF KETONE BODIES

Figure 3: The enzymatic pathway of Ksed_RS05035, Hydroxybutyrate




Figure 4 – A TMHMM result predicting 5 transmembrane helixes for KSED_RS05045

type II secretion system protein F [Kribbia dieselivorans]
Sequence ID: WP_068401563.1 Length: 288 Number of Matches:

Range	1: 3 to	288 GenPept Graphics		Next Match	A Previous Match
Score		Expect Method	Identities	Positives	Gaps
329 bi	ts(84	3) 4e-110 Compositional matrix adjust.	174/287(61%)	214/287(74%)	3/287(1%)
Query	2	GMLLGATLGLGLALVWDSFWPRRPRARVTRTTWQ G+ LGA LG GL LVW + W P PR +R	•		
Sbjct	3	GLFLGALLGTGLFLVWWACWVQPEVPRVG-SRGRML			
Query	60	AALGVVTFVLTAGLTGVLPVAAAFGLIASGLPWAVL L V F+ V+P+AA FGLIA+GLP ++			
Sbjct	62	VVLFAVVFLGFVATVKVVPIAACFGLIAAGLPIVII			
Query	120	GVRAGMALPEALAQLAVRGPEELRPAFAGFAHDYRA VRAG+ALPEALAQL VRGP ELRPAF F DYRA			
Sbjct	122	AVRAGLALPEALAQLGVRGPVELRPAFIAFGEDYRA			
Query	180	ESLRIAREVGGSDLGVVLRTLSSFLREEAHTRSEME ESLR+AREVGG+DLG +LRTLSSFLRE+A TR+E+E			
Sbjct	182	ESLRVAREVGGTDLGSLLRTLSSFLREDARTRAELE			
Query	240	ATRGDSLAAYNSTTGALVLVLGGLVSVGAYLLMMRL TR DS+AAY + TG LVL +GG ++V AY LM+R+		36	
Sbjct	242	TTRPDSMAAYGTVTGVLVLAIGGALTVVAYQLMLRI		38	

Figure 5 – Example of a BLAST hit for Ksed_RS05045

Conclusion

The GENI-ACT proposed gene product did not differ significantly from the proposed gene annotation for each of the genes in the group and as such, the genes appear to be correctly annotated by the computer database

correctly armotated by the computer database.					
Gene Locus	Geni-Act Product	Proposed			
	1	Annotation			
Ksed_RS05035	3-hydroxybutyrate	3-hydroxybutyrate			
	dehydrogenase	dehydrogenase			
Ksed_RS05045	type II secretion	type II secretion			
	system protein F	system protein F			
Ksed_RS05050	Flp pilus assembly	Flp pilus assembly			
	protein TadB	protein TadB			

References

Folayan et al. (2018). *Kytococcus Sedentarius* and *Micrococcus luteus*: highly prevalent in indoor air and potentially deadly to the immunocompromised – should standards be set? Tropical Biomedicine, 35 (1) 149-160.

Sims et al. (2009). Complete genome sequence of *Kytococcus* sedentarius type strain (541T). Standards Genomic Sciences, 12 - 20.

Acknowledgments

Supported by an NIH Science Education Partnership (SEPA)
Award - R250D010536

Special thanks to Dr. Stephen Koury, Dr. Rama Dey-Rao, and Brittany Mitchell

www.buffalo.edu