Annotation of the Vibrio cholerae Genome at Locus Tag VC395_1566

Ziona Cotton and Karen McCann

School Without Walls Rochester, New York and The Western New York Genetics in Research and Health Care Partnership

Abstract

A gene from the microorganism VC395_1566 was annotated using the collaborative genome annotation website GENI-ACT. The Genbank proposed gene product name for the gene was assessed in terms of the general genomic information, amino acid sequence-based similarity data, structure-based evidence from the amino acid sequence, and cellular localization data. The Genbank proposed gene product name did differ from the proposed gene annotation for the gene and as such, the gene does not appear to be correctly annotated by in the database.

Introduction

Vibrio cholerae is a gram negative, non-spore forming, curved rod. It is oxidase positive which means when an oxidase test is performed it shows bacteria produces cytochrome. It is very motile, has a single flagellum, and is a facultative anaerobe. Vibrio cholerae is a part of the Vibronaceae family. Serogroups O1 and O139 are mostly responsible for cholera breakouts. When this bacteria enters the body some of the bacteria are killed by stomach acid. However, some are still able to travel to the small intestine, causing a loss of large amounts of salt and water in the form of diarrhea. This results in dehydration and when severe can cause death. V. cholerae is a natural inhabitant of enclosed coastal bodies of brackish water. These organisms mostly spend their entire life cycle in estuarine environments and when a human host is encountered by the organism the disease cholera starts it's development. Cholera outbreaks a normally happen due to feces contaminating the waters.

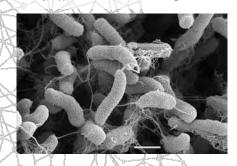
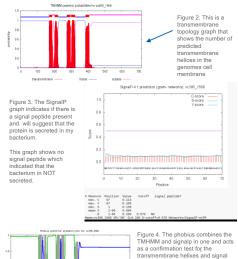


Figure 1. The locus tag and relative position of the gene under investigation in this research.


11/20	7	18.	1.2		Dw.S.Dr.	N. I.	
(111	1632k	1633k	1624	ık 1635i	k		
₹_	VC395_1565	VC35	5_1566	<u> </u>	VC395_1567		
4_						VC395_15	(

Methods

Modules of the GENI-ACT (http://www.geni-act.org/) were used to complete *Vibrio Cholerae* genome annotation . The modules are described below:

Modules	Activities	Questions Investigated	
Module 1- Basic Information Module	DNA Coordinates and Sequence, Protein Sequence	What is the sequence of my gene and protein? Where is it located in the genome?	
Module 2- Sequence-Based Similarity Data	Blast, CDD, T-Coffee, WebLogo	Is my sequence similar to other sequences in Genbank?	
Module 3- Cellular Localization Data	Gram Stain, TMHMM, SignalP, PSORT, Phobius	Is my protein in the cytoplasm, secreted or embedded in the membrane?	
Module 4- Alternative Open Reading Frame	IMG Sequence Viewer For Alternate ORF Search	Has the amino acid sequence of my protein been called correctly by the computer?	
Module 5- Structure-Based Evidence	TIGRfam, Pfam, PDB	Are there functional domains in my protein?	
Module 6- Enzymatic Function	KEGG, MetaCyc, E.C. Number,	In what process does my protein take part?	
Module 7- Gene Duplication/ Gene Degradation	Paralog, Pseudogene	Are there other forms of my gene in the bacterium? Is my gene functional?	
Module 8- Evidence for Horizontal Gene Transfer	Phylogenetic Tree,	Has my gene co-evolved with other genes in the genome?	
Module 9- RNA	RFAM	Does my gene encode a functional RNA?	

Results

peptides.
TMMM indicates that there were 5 transmembrage telliges, SignalP reveals low probability for signal peptide, PSDRTB fredicated vC395_1564 or the a vorpolamic protein. Due to priv results! believe that VC395_1566 has problamic

Gene product
name of the control of

NTIRHADRIPVLOKOQVAESOTHEELLAQ-QOLYARL 711

COG Hit- When doing my COG search the results came back with only one COG named ABC-type bacteriocin/lantibiotic exporters, contain an N-terminal double-glycine peptidase domain which was significant because I received a e-value of 0e+00.

differences in their jobs.

Figure 7. Below is the Weblogo sequence which is generated from the T-Coffee alignment. The letters that represents the amino acids are large even though they are stemming from different genus. The gaps throughout the sequence is caused by one protein having extra amino terminals

From 35-135aa in the weblogo sequence the amino acid alignment was not as well conserved and fluctuated a lot. From 136-145aa there was a gap left, and from 154-740aa the amino acid alignment began to have high conservation. The one area with the most conservation showed that, that part of the amino acid sequence is most likely important.

VC395 1566

- The initial proposed product of this gene by GENFACT was a putative toxin secretion transporter. This gene product was not supported but was more of a hypothetical product.
- This was not supported by the top BLAST hits for the aminoacid sequence which gave the function to be a feukotoxin translocation ATP- binding protein. Combining this information with the evidence collected from the cellular localization data module it was found to be a cytoplasmic membrane protein.
- The proposed annotation for this gene product is part of an ABC toxin transporter that has multiple parts to translocate a product across a membrane This was supported by the BLAST hits for the amino acid sequence as well as the COG hit.

Figure 8. This is an example of an ABC transporter although not my specific protein

Conclusion

The GENI-ACT proposed gene product did differ from the proposed gene annotation for the gene and as such, the gene appear to be incorrectly annotated by the computer's database. The proposed annotation is a ABC toxin transporter protein.

			- N. H. M.	
Gene Locus	GENI-AC		Proposed	
Δ.	Product	A = B	Annotatio	n-~
VC395_1566	Putative t	oxin	Part of an	ABC toxin
Garage Marie	secretion	transporter	transporte	K \ /

References

Sims et al. (2009). Complete genome sequence of *Kytococcus* sedentarius type strain (541T). Standards Genomic Sciences,12 - 20.

Acknowledgments

Supported by an NIH Science Education Partnership (SEPA) Award - R25ODO10536

www.buffalo.edu