Annotation of the *Clostridium botulinum* Genome Strain 657/Type Ba4 at Locus Tags CLJ_0012 & CLJ_0017

Alina N. Beadle*, Amanda R. Roth* & Margaret S. Jolles Silver Creek Central School District & The Western New York Genetics in Research and Health Care Partnership

H National Institutes of Health

SCIENCE EDUCATION

Supported by the National Institutes of Health

University

at Buffalo

Abstract

Two students from Silver Creek Middle School participated in the Western New York Genetics in Research and Health Care Partnership Gene Annotation Research Study. Annotation is the process of assigning function or biological significance to a gene. Using the Geni-Act website, students were able to annotate their gene based off of Basic Information, Sequence Based Similarity Data, Structure Based Evidence, Cellular Localization Data & Alternative Open Reading Frame. The students were able to obtain data including protein structure, function and location.

Introduction

Clostridium botulinum is a gram positive, anaerobic, rod shaped bacterium associated with improperly produced canned goods. It produces a toxin that is lethal. This is most commonly obtained when a canned food item is consumed that was not stored at proper temperature, was not prepared properly at time of canning or when a can has begun to swell and the contents are consumed. *Clostridium botulinum* was first discovered and isolated by Emile van Ermengem in 1896, and it was later deemed to survive by forming spores, remaining in a dormant (sleep like) state until environmental conditions are perfect for growth.

Clostridium botulinum consists of seven subtypes. Each subtype produces a different botulinum toxin; with the exception of subtypes three and four, all are human pathogens. Types one and two, commonly found in soil are the primary cause of botulism outbreaks in the United States. Type five commonly found in fish is also a contributor to the cases of botulism in the United States.

Our team analyzed *Clostridium botulinum* Strain 657/ Type Ba4. Our Locus tags were CLJ_0012 and CLJ_0017, both being of similar length. Our goal was to analyze and find the functions of our two genes.

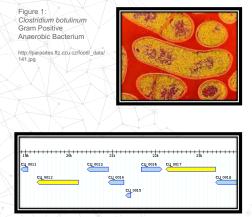
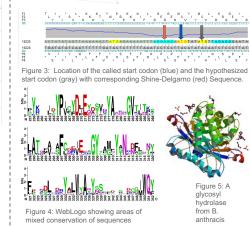


Figure 2: The locus tags (in yellow) and relative position of the genes under investigation in this research

Methods


Modules of the GENI-ACT (http://www.geni-act.org/) were used to complete *Clostridium botulinum* genome annotation . The modules are described below:

Modules	Activities	Questions Investigated
Module 1- Basic Information Module	DNA Coordinates and Sequence, Protein Sequence	What is the sequence of my gene and protein? Where is it located in the genome?
Module 2- Sequence-Based Similarity Data	Blast, CDD, T-Coffee, WebLogo	Is my sequence similar to other sequences in Genbank?
Module 3- Cellular Localization Data	Gram Stain, TMHMM, SignalP, PSORT, Phobius	Is my protein in the cytoplasm, secreted or embedded in the membrane?
Module 4- Alternative Open Reading Frame	IMG Sequence Viewer For Alternate ORF Search	Has the amino acid sequence of my protein been called correctly by the computer?
Module 5- Structure-Based Evidence	TIGRfam, Pfam, PDB	Are there functional domains in my protein?

CLJ_0012: *CLJ_0012* has a sequence of 318 amino acids with the proposed gene product of *LycA*. *LycA* is a protein with lysozyme activity in at least one strain of *Clostridium botulinum, Kyoto/Type A2. LycA* is in the glycoside transferase family of proteins. These proteins break bonds between one or more carbohydrates.

The first BLAST hit from curated Swiss Protein Data Base resulted in Lysozyme M1. The second BLAST hit produced Probable N-acetylmuramoyl-L-alanine amidase. Both proteins are in the glycoside hydrolase family. Both Non Redundant database hits resulted in Glycoside Hydrolase family from 2 different species of bacteria. The first COG3757 shows the result Lvsozvme M1 and COG3409 indicated a Peptidoglycan binding domain of peptidoglycan hydrolases. Peptidoglycan forms the cell wall in Gram Positive bacteria. Cellular localization results describe the protein as 'extracellular' with no predicted helices (TMHMM), no signal peptide (Signal P) and non-cytoplasmic (Phobius). This 'extracellular' location does make sense if it is associated with the peptidoglycan layer. T-Coffee and WebLogo results show a protein that is not well conserved at the N-terminus with 172 amino acids absent (this appears to be due to the use of a hypothetical protein WP 051082168.1 in the T-Coffee sequences), moderate conservation from amino acid 173 - 428 and poor conservation/absence from 429 - 544. TIGRFAM showed no significant hits but Pfam yielded two, a glycoside hydrolase family 25 and peptidoglycan binding domains. PDB first hit results in a glycosyl hyrdrolase from Bacillus anthracis

Possibly the most important finding from this annotation is the hypothesis that the computer called the start codon for CLJ_0012 in error. The computer set the start codon at 19267 with the Shine-Delgarno sequence beginning at 19260. This leaves only one base pair between the end of the Shine-Delgarno sequence and the beginning of the start codon. Looking only 6 bases downstream from the called start codon is another start codon, at 19273. This codon appears to be in a much better position with 7 base pairs between the Shine-Delgarno sequence and hypothesized start codon. The information obtained through Geni-Act implies enzymatic function for *CLJ_0012*. Unfortunately, this research did not confirm a specific pathway Module 6 in Geni-Act.

CLJ_0017: This protein has a sequence length of 384 amino acids with a proposed gene product of methionine adenosyltranferase. Methionine adenosyltransferases (MAT) are the family of enzymes that synthesize the main biological methyl donor, S-adenosylmethionine. All 4 BLAST hits, 2 each from Non-Redundant and curated Swiss Protein Data Base, resulted in a match to adenosyltransferase. Both alignment results and e-values made these hits highly significant. Only one COG hit, #0192 was shown, with the result

S-adenosylmethionine synthetase. 16 sequences were used in <u>T-Coffee</u> to compare with *CLJ_0017*. The <u>WebLogo</u> generated shows a very high degree of conservation across the entire amino acid sequence with the exception of the first and last few amino acids.

The location of this protein is predicted to be cytoplasmic. The evidence for this is no predicted helices by <u>TMIHMM</u>, no signal peptide present by <u>Signal P</u> and a high cytoplasmic score of 9.97 from <u>PSort B</u>. <u>Tigrfam</u> & <u>Pfam</u> are both used to reveal structure based evidence in the annotation process. Both databases also produced results that support the previous evidence, *S*-adenosyltransferase. Use of <u>PDB</u> also supports all previous evidence with the *Crystal structure of a thermostable methionine adenosyltransferase*. Work in the <u>Alternative Open Reading Frame</u> Module supports the fact that the computer has called the correct start and stop ositions in the DNA.

The information obtained through Geni-Act implies enzymatic function for *CLJ_0017* as this is a *transferase* molecule. Unfortunately, this research did not identify a specific pathway after using the Geni-Act, enzymatic function module.

				nine synthase		let syr	thase; AltN	lame	EUT=MAT;	AltName: F	ul=Methior	nine ader	nosyltr
equenc	e 10: 9	23AFS4.1	Length: 396	Sumber of Match	esi 1								
ange 1 icore	: 3 to	391 <u>GenPe</u>	ot Graphica I Method		Identities	V N	ext Hatch		ious Match				
	s(14)	0.0 (bxpec)		nal matrix adju		66%)							
uery	2	SUPISES	VIEGHPORICO	15051VDE11580	ENARIACETVVI	IGWI	MGEISTRCE	61					
bjct	3	* LFISES	VIEGEPORI D	ISD+++D I+++D ISDAVLDAILAQD	POARVACETAVT	TGLVL	VIGEITTSCY	62		-	e 6: 1s	L L L L L	
uery			KTISDIGYRDG +TI +IGY		IDROSPDIAMSV ID+05PDIA+SV		DK	108					
bjet		VDIEKVVR	ETIREIGYIRA	CYGFDGDICAVIIS			ARTGENTDDE	122			Prote		<u>ata</u>
bjct		++ IGNGD	DGMVFGFADME DGM+FG+A NE	PEYMPLPIVLASH PE MP+PI LASH PELMPMPISLASH	LAGRLAYVERDER LA RLA VRK+	L YL	PDGKTQVTV	168		Base	illustra	ating	
Dery				DWYSNERIOODII		TINDT	KILINPIGRE	228		sianifi	cant a	liann	ner
bict		EYDGD P :	RVD IVVSTOR	+VS E+I++DII PDVSQEEIRKDII	++V++ IP+ -	+D +T	+NPTGRF RYEVNPTGRF	242			en CL		
uery bjcc		V+669060	+GLIGRKIIVD	YOOVORHOOGAFS YOG+ +NOGGAFS	GKOPTK LRS A	YAARW YAAR+	AKILVAAGV AKI+VAAG+	288			ubiect		,,,,
uery		ADRIETOT	AVATOVSNEVS	STRESTORYSTE	FILKLANKVERU	TPLAT	INFLELENPT	348					
bjct				+DIF IGK +DE MVDIFGIGKIADE				342				*	
uery bjct		TROTAATO TROTAATO TROTAATO	HFORLDLDLPW HFGR D+DLPW HFGRIDIDLPW	RLNRVNRIK 37 R++K + ++ RIDKANILR 39							0	20	2
3- 2- 1- N 8- 3- 2- 1- N 8- 4- 3- 2- 1- N 8- 4- 8- 1- N 8- 8- 1- N 8- 8- 1- N 8- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8-	S				RAKE AK			128.01					
				o from C			o acid	09 S	of a meth trans	therm nionin sferas deno:	Crysta ostab e ade e; <i>CL</i> syltran	le nosy J_00	/l- 017
~ .		201		00									

Conclusion

The GENI-ACT proposed gene product did not differ significantly from the proposed gene annotation for each of the genes. The genes appear to be correctly annotated by the computer database.

Gene Locus	Geni-Act Gene Product	Proposed Annotation
CLJ_0012	LycA of the glycosyl transferase family	LycA of the glycosyl transferase family
CLJ_0017	Methionine adenosyltransferase	Methionine adenosyltransferase

References

- http://www.sciencedirect.com/science/article/pii/S0923250814 002046 http://www.ebi.ac.uk/interpro/protein/C1FUI1
- http://www.cazy.org/Glycoside-Hydrolases.html
- http://www.uniprot.org/uniprot/P25310
- http://www.els.net/WileyCDA/ElsArticle/refld-a0000702.html
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643306/

Acknowledgments

- Supported by an NIH Science Education Partnership (SEPA) Award - R25OD10536-1 A1
- Stephen Koury Ph.D. Research Associate Professor Dept. of
- Biotechnical & Clinical Laboratory Sciences
- Jennifer R. Cooke, MPS, CSA, Program Coordinator WNY Rural Area Health Education Center (R-AHEC)