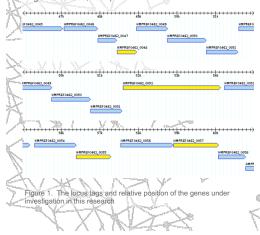
Annotation of the Helicobacter pylori Genome from DNA Coordinates 48459 to 60086

Rebekah Boy and Lawrence Hohl

East Rochester Junior/Senior High School, East Rochester NY and the Western New York Genetics in Research and Health Care Partnership


Abstract

Introduction

I was given a segment of the Helicobacter pylori 83 genome to annotate, to attempt to find the probable products of these genes, as there was no predicted product for these four in GENI-ACT. Using the modules of GENI-ACT to analyze them, I found evidence that gene 0048 likely contains a helixturn-helix domain, gene 0052 is likely an adenine-specific DNA methyltransferase, gene 0055 is likely a type II restriction endonuclease, and gene 0057 is likely located in the periplasmic membrane of the bacterium. As type II restriction endonucleases often work in tandem with methyltransferases, and genes 0048 and 0055 are close together, it may be plausible that the products of these two genes work together. Gene 0057 may also be related to these genes, as helix-turn-helix domains are often involved in regulation of DNA.

Helicobacter pylori 83 is a gram-negative bacteria, which burrows into the epithelial cells of the stomach (Amieva et al., 2008). It produces urease to neutralize the gastric acid around itself, which produces ammonia and damages the surrounding epithelial cells, inflaming the cells and often causing gastric and duodenal ulcers. Other chemicals it produces, such as protease and lipase, have a similar effect (Smoot, 1997).

Like many other bacteria, Helicobacter pylori contains type II restriction endonucleases, which cleave foreign DNA a set number of nucleotides after a particular recognition sequence, as a defense mechanism. Often. methyltransferases work in tandem with these enzymes, «recognizing the same sequence in its own DNA that an endonuclease does, to add a methyl group to it, thus protecting it from being cleaved by the endonuclease (New England BioLabs, 2017).

Methods Modules of the GENI-ACT (http://www.geni-act.org/) were used to complete Helicobacter pylori 83 genome annotation . The modules are described below:

Modules	Activities	Questions Investigated		
Module 1- Basic Information Module	DNA Coordinates and Sequence, Protein Sequence	What is the sequence of my gene and protein? Where is it located in the genome?		
Module 2- Sequence-Based Similarity Data	Blast, CDD, T-Coffee, WebLogo	Is my sequence similar to other sequences in Genbank?		
Module 3- Cellular Localization Data	Gram Stain, TMHMM, SignalP, PSORT, Phobius	Is my protein in the cytoplasm, secreted or embedded in the membrane?		
Module 4- Alternative Open Reading Frame	IMG Sequence Viewer For Alternate ORF Search	Has the amino acid sequence of my protein bee called correctly by the computer?		
Module 5- Structure-Based Evidence	TIGRfam, Pfam, PDB	Are there functional domain in my protein?		
Module 6- Enzymatic Function	KEGG, MetaCyc, E.C. Number,	In what process does my protein take part?		
Module 7- Gene Duplication/ Gene Degradation	Paralog, Pseudogene	Are there other forms of my gene in the bacterium? Is my gene functional?		
Module 8- Evidence for Horizontal Gene Transfer	Phylogenetic Tree,	Has my gene co-evolved with other genes in the genome?		
Module 9- RNA	RFAM	Does my gene encode a functional RNA?		

Results

The proposed products of these four genes by GENI-ACT were all hypothetical proteins.

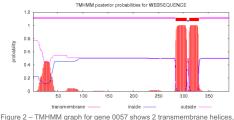
HMPREF0462 0048:

The proposed annotation of this gene is a helix-turn-helix domain-containing protein because BLAST hits showed that this amino acid sequence a had a very strong correlation with sequences known to code for them.

HMPREF0462 0052:

BLAST hits and structure-based evidence, as well as its localization within the cytoplasm support its categorization as a DNA methyltransferase. Thus, the proposed annotation of this gene is an adenine-specific DNA methyltransferase.

HMPREF0462 0055:


The proposed annotation of this gene is a type II restriction endonuclease, based on strong BLAST results comparing the gene with ones known to code for restriction enzymes.

HMPREF0462_0057:

This gene codes for a protein that is most likely located in the periplasmic membrane, due to the presence of transmembrane helices

Due to the proximity of genes 0052 and 0055, and their annotations being a restriction endonuclease and a methyltransferase, which work closely together, these two genes may have related functions.

As gene 0048 is also located near these genes, and likely, contains a helix-turn-helix domain, which is also associated with gene regulation, this gene's function may also be with that of genes 0052 and 0055

supporting its localization in the periplasmic membrane. type II restriction endonuclease [Helicobacter pylori] Sequence ID: BAW68203.1 Length: 297 Number of Mat

Range 1: 1 to 297 GenPept Graphics

Score 577 bi	ts(148	Expect 8) 0.0	Method Compositio	onal matri	k adjust.	Identities 285/297(96%)	Positives 290/297(97%)	Gaps 0/297(0%)
Query	1	MDYQTFSEI	FNRFVFGTSK	AKLLENIAE	NPERYLGI	FRPTKPKTKLLONL	LTSHEIKFGD 6	9
Sbjct	1	MDYQTFSEI	FNRFVFGTSK	AKLLENIAE	NPERYLGI	FRPTKPKTKLLQNL	LTSHEIKFGD 6	9
Query						LDQFAKKDNTYYFI		20
Sbjct						LDQFAKKDNTYYFI LDQFAKKDNTYYFI		20
Query						NKNONYYKEELOKL		80
Sbjct						NKNÓNYYKEELŐKL NKNÓNYYKEELŐKL		80
Query	181	CYGKELFEN	LNILQVWGEI	LNHLARWRE	TLPDLPSL	NFDENPLESFEEIK		40
Sbjct						NFDENP ESFEEIK NFDENPSESFEEIK		40
Query						QLASKLEKRLSSKE		
Sbjct	241	LONDGIFNL	VLILFPEQKV VLILFPEQKV	LKRL EYFR	QQN+TIYQ QQNKTIYQ	QLASKLE+RLSSKE QLASKLEERLSSKE	NHQKTLS 297	
						ences of ge ery strong		

adenine-specific DNA methyltransferase [Helicobacter pylori] ence ID: BAW46446.1 Length: 842 Number of Matches:

Score			Evnect	Method					Iden	tities		Positive		Gaps
1615	bits(41			Compos	itiona	l matr	ix adi	ust.			6%)	822/843		1/843(0%)
Query	1	MIKE		U TVGEVE		SI ENI		DNEN	KEEKT	EHER	REOG	SOPDFRVS	F 60	
Sbjct	1	MLKE	YLESIK	DLT + E	LTHR	SL NL	L++LK-	++FN	KEFKI	EHEPK	+EÔG	SOPDFRVS	F	
	61													
Query		ÓGLN	IGYIEN	(R G NL+	ÓLLK I	DŐI K	YLELN	PNLM	LT+YL	NEMMA	GKDE	NNAPLIKK NNAPLIKK	E	
Sbjct	61	-				-						NNAPLIKK		
Query	121	ISVA	SLDEL SH	PLKP+PO	ERDL	IELFK	SEENH	EAAP	ITNAK	DEATH	LS R	TRYLKDAL TRYLKDAL	I	
Sbjct	121	ÎŜVA	SLDELS	PLKPEPQ	IERDL	IELFK	SFFNH	EAAP	ITNAK	DFATH	LSPR	TRYLKDAL	Î 180	
Query	181	KYQE	KTOVSSI	FNNEKEY	LYEEL	SFEDF	SDALA	QTLT	YSLFL	AKLN	PFEK	INLDNVRS	s 240	
Sbjct	181											INLDNVRS		
Query	241	IPKN	FAVIRE	ADFLKKL	DGIKE	IQWLL	NEILS	SINH	VDMDS	IIKDL	NDDK	DPYLHFYE	т 300	
Sbjct	241	IPKN IPKN	FAVIREN	MADFLKKL MADFLKKL	DGIKE	IQNLL IONLL	NEILS	SINH		I+KDL	NDDK NDDK	DPYLHFYE DPYLHFYE	T T 300	
Query	301											ENIKLLDF		
Sbjct	301	FLSA	YDPKLRE	SKGVYYT	PDSVV	KFIIN	ALDSL	LKTH	FKDAP	LGLKS	ALDN	ENIKLLDF	A	
-														
Query	361	TGTG	TFLLEAP	RKALEMR	KTSDG	GISTK	EDKYO	NLLK	ÓFYGF	EYLIA	PYAL	AHLNLSQA AHLNLSQA	F	
Sbjct	361	TGTG	TFLLEAP	RKALEMR	KTSDG	GISTK	EDKYQ	NLLK	QFYGF	EYLIA	PYAI	AHLNLSQA	F 420	
Query	421	KEEF	KKPLKEN	DALKIIL	INTLI	OPSET OPSET	IAYRG	LOPI	FETEL	LNAQE	IKKD	ENILIITG ENILIITG	N 480	
Sbjct	421											ENILIITO		
Query	481	PPYS	GASSNEO	LFEWEVK	ATYGI	EPEFQ	TIEIE	KKVK	LTDKI	KALL	NIQT	QKQGGSKK	A 540	
Sbjct	481	PPYS	GASSNEO	SLFEWEVK SLFEWEVK	ATYGI ATYGI	EPEFQ	TIELE	KKVK KKVK	LTDKI LTDKI	KALLK KALLK	NIQT	ÖKÖGGSKK ÖKÖGGSKK	A A 540	
Query	541	LKEL	KNLHSKY	KLODEKN	PKWLL	DDYVK	EMREA	DNKT	ESLGH	GLEGE	ISNN	AFLNNPTE	R 600	
Sbict	541	LKEL	KNLHSKY	KLÖDEKN	PKWLL	DDYVK	EMREA	ÖNKI	ESLGH	GLFGF	ISNN	AFL+NPTF AFLDNPTF	R	
	601			-								NPQTTKQK		
Query		GLR	SLLECYD	DELYILNL	HGNAR	KKEKT	PÓG DI	D+NV	FNIKÓ	GVSIN	ILFVK	NPÓTTKÓK	I	
Sbjct	601											NPQTTKQK		
Query	661											GESVQNME GESV++ME		
Sbjct	661											GESVKDME		
Query	721											LEYAIREV		
Sbjct	721	VGGT	GICSKR	HVVFHKT	KESLL	ELLKD	FSTLE	PSEL	RKYD	IGDDS	RDWR	LEYAIREV	к К 780	
Query	781	TNIK	RLEEYI	/LCQYRPF	DYRWT	YYTPN	SRTFL	AYPV	YDVFK	HMLPF	POQT	LKHPIKRA	K 840	
Sbict	781	TNIK	RLEEYIN	/ CÓYRPF /FCÓYRPF	DYRWT	YYTPN YYTPN	SRTFL	AYPV	YDVFK	HML F	00T X00T	LKHPIKRA LKHPIKRA	K K 839	

Sbjct 840 MSR 842

Figure 4 - BLAST comparing the sequences of gene 0052 and an adenine-specific methyltransferase, showing a strong correlation

▶ See	ice ID: 1 mor	WP_0757 e title(s)		g protein [Helico th: 167 Number of			ch 🛦 Previous Match
Score		Expect	Method	al matrix adjust.	Identities 165/167(99%)	Positives 166/167(99%)	Gaps
Query	1	MLSSNDLF	MVVLGAILLVLV	CLVGYLYLKEKEFYH	KMRRLEKTLDESYQ	ENYIYSKRLKE 6	60
Sbjct	1	MLSSNDLF	MVVLGAILLVLV MVVLGAILLVLV	CLVGYLYLKEKEFYH CLVGYLYLKEKEFYH	KMRRLEKTLDESYQ KMRRLEKTLDESYQ	ENYIYSKRLKE ENYIYSKRLKE (60
Query	61	LEGRLEGI	SLEKSAKEDSSL	RTTLSHLYNQLQEIQ	KSMDKERDYLEEKI	IILENKFKDMG 1	120
Sbjct	61	LEGRLEGI	SLEKS KEDSSL SLEKSTKEDSSL	RTTLSHLYNÔLÔEIÔ RTTLSHLYNÔLÔEIÔ	KSMDKERDYLEEKI	IILENKFKDMG 1 IILENKFKDMG 1	20
Query	121	HYAANDEI	NEKQVLKMYQEG	YSVDSISKEFKVSKG YSVDSISKEFKVSKG	EVEFVLNMAGLK	167	
Sbjct	121	HYAA+DEI HYAASDEI	NEKÖVLKMYÖEG	YSVDSISKEFKVSKG	EVEFVLNMAGLK	167	

SCIENCE EDUCATION PARTNERSHIP AWARD poorted by the National Institutes of Health

University

at Buffalo

helix domain-containing protein, showing a very strong correlation. Conclusion

GENI-ACT had not predicted specific products for any of these four genes, but after completing the GENI-ACT modules, likely products became evident.

Gene Locus	GENI-ACT Gene Products	Proposed Annotation
HMPREF0462_ 0048	hypothetical protein	helix-tum-helix domain- containing protein
HMPREF0462_ 0052	hypothetical protein	adenine specific DNA methyltransferase
HMPREF0462_ 0055	hypothetical protein	type Il restriction endonuclease
HMPREF0462_ 0057	hypothetical protein	periplasmic protein

References

1. Amieva, M., and El-Omar, E. 2008. Host-bacterial interactions in Helicobacter pylori infection http://www.gastrojournal.org/article/S0016-5085(07)02016-1/abstract

- 2. Smoot, D. 1997. How does Helicobacter pylori cause Direct mucosal damage? nechanis http://www.gastrojournal.org/article/S0016 5085(97)80008-X/abstract
- 3. New England BioLabs. 2017. Everything You Ever Wanted to Know About Type II Restriction Enzymes https://www.neb.com/tools-and-resources/featurearticles/everything-you-ever-wanted-to-know-about-type ii-restriction-enzymes
- 4. Brennan, R., and Matthews, B. 1989. The Helix Turn-Helix DNA Binding Motif. The Journal of Biological Chemistry 264 2 1903-1906

Acknowledaments

Rama Dey-Rao, Ph.D. University at Buffalo Stephen T. Koury, Ph.D. University at Buffalo Supported by an NIH Science Education Partnership (SEPA Award - R250D010536

www.buffalo.edu