Module 3: Structure Based Evidence

Objective

The objectives of this module are:

- 1. To determine if the protein you are annotating is functionally similar to other known proteins, or has domains of known function, using TIGRFAM, PFAM and PDB applications.
- 2. To document your search results in the Structure Based Evidence Module lab notebook.

Materials

To perform this activity you will need:

- Access to the internet on a computer equipped with the most recent version of Firefox (preferred), Chrome or Safari.
- To have completed the sign up for GENI-ACT described in the Signing Up for GENI-ACT section of the manual.

Background

This module is an extension of the sequence-based similarity module, where sequence homology was looked at to determine relatedness of proteins. One limit to the solely sequenced based approach in determining function of a protein is that proteins can share some regions of sequence homology and yet have widely varied function. In module 3, the relatedness of sequence to functional domains or structures will be investigated. Three tools will be used for this purpose: TIGRFAM, PFAM and PDB. <u>Note that this module is being done "out of the order" of the module list on GENI-ACT</u>. This is because it is more related to Module 2 and we feel it makes more sense to perform this module immediately after Module 2 has been completed.

TIGRFAM and Pfam tools are based on Hidden Markov Modeling (HMM). A Hidden Markov Model is a probabilistic model developed from observed sequences of proteins of a known function. The profile HMM is used to score the alignment of the amino acid sequence entered to other proteins based on amino acid identity and position. Proteins, or domains of proteins, of known function are aligned to create the profile HMM, against which sequences of proteins with unknown function are compared. The software then predicts whether amino acid sequence of the protein of unknown function matches that of the profile HMM. If it does, then it is assumed that the function of the protein, or protein domain, matching the profile HMM will have the same function as defined by the profile HMM.

TIGRFAM

TIGRFAM is a manually curated database (meaning that the database is constructed based on some sort of supporting evidence) of protein families known to have similar functions. Each TIGRFAM model is assigned to a category which describes the type of functional relationship the proteins in the model have to each other. The models have the following hierarchy:

- equivalog one specific function, e.g. "ribokinase"
- **subfamily** group of related functions generally with different substrate specificities, e.g. "carbohydrate kinase"
- superfamily many different functions that are related in a very general way, e.g. "kinase"
- **domain** not necessarily full-length of the protein, contains one functional part or structural feature of a protein, may be fairly specific or may be very general, e.g. "ATP-binding domain"

When an amino acid sequence is searched against the TIGRFAM database and a good hit is found, there is likely to be a functional relationship between the query and the hit in the database.

Pfam

The Pfam database contains information about protein domains and families. Pfam-A is the manually curated portion of the database that contains over 10,000 entries. For each entry a protein sequence alignment and a hidden Markov model is stored. Because the entries in Pfam-A do not cover all known proteins, an automatically generated supplement is provided called Pfam-B. Pfam-B contains a large number of small families derived from clusters produced by an algorithm. Although of lower quality, Pfam-B families can be useful when no Pfam-A families are found (<u>http://en.wikipedia.org/wiki/Pfam</u>). The following nomenclature is used in describing PFAM results:

- **Domain:** A structural unit which can be found in multiple protein contexts.
 - e.g., zinc finger, leucine zipper
- Family: A collection of related proteins containing the same domain.
 - o e.g., immunoglobulins, CD4, MHC, TCR, etc.
- **Clan:** A collection of multiple protein families. The relationship may be defined by similarity of sequence, structure, or profile-HMM.
 - o e.g., ATPase functioning in ETC vs.

ATPase functioning in DNA replication.

Protein Data Bank (PDB)

The Protein Data Bank (PDB) is a repository for the three-dimensional structural data of large biological molecules. It is, by definition, a curated databank that has information from researchers who have experimentally determined 3 dimensional structures of proteins in the databank. These researchers will also often provide evidence for the function a particular structural domain has in a protein. You will look for matches to your protein sequence in this databank. If you find a match you are likely to find significant information about the function of your protein.

Procedures

Standard Operating Procedure: Structure-based Evidence Module

TIGRFAM:

- I. Go to http://blast.jcvi.org/web-hmm/.
- 2. Select TIGRFAMS in the database pull down menu, leave the scope set to GLOBAL and change the E-value cutoff limit to '0.01' from pull down menu as shown in Figure 3.1. The E-value cutoff limit may be changed depending on how well the sequence is conserved.

	Se	arching a sequ	ence against pro	tein family based HMMs	
This p describ fragme	age supports searches of pro- bed <u>here</u> . The default GLOF ents or partial length, also tr	otein sequence against BAL search looks for n y a FRAGMENT searc	a database of hidden Marl hatches of the full length n ch.	cov models (HMMs) based upon protein fam nodel against the query sequence. If query se	ilies. The databases are quences are potentially
Database: Upload a file cont	TIGRFAMS ÷	Scope: ste it into the textbox:	GLOBAL \$	E-value cutoff level:	0.01 ÷
Enter the name of Browse No file	f the file containing a protei selected.	in sequence in <u>FASTA</u>	or raw format:		
Enter your protei	n sequence in <u>FASTA</u> or ra	w sequence format:			
Sequence identifi	er (for definition line if raw	sequence entered):			

Figure 3.1. The TIGRFAM search entry page with parameters set as described in the text.

- 3. Open your GENI-ACT basic information module, copy the FASTA formatted amino acid sequence of the protein encoded by your gene and paste it into the search text box of the TIGRFAM entry page (Figure 3.2).
- 4. Click on the Start HMM search (arrow, Figure 3.2).

PAGE 60 OF 193

Database:	TICRFAMS ‡	Scope:	GLOBAL ‡	E-value cutoff level:	0.01 ‡
Upload a file cont (Note: If both are enter	taining a sequence OR paste it red, the file will be ignored.)	into the textbox:			
Enter the name of Browse No file	f the file containing a protein see selected.	uence in <u>FASTA</u> or raw fo	ormat:		
Enter your protei	n sequence in FASTA or raw sec	uence format:			
> Ksed 00010 YSQTPDBHATAIWQ EDVSTALASTLDRD EGSSPARAGESVAP GARAYNELTYGGS QURDYDVLLIDDIQ GLITDVQPPDLLIDDIQ FLDSYLARTLIKDY ELTDLSLFXICKEF	amino acid sequence EANVILQCAGLAPRIGVIRLATLYG ILLAVSVDPDAVSAAQEEAAPPAESP ATTASLTATNSSPGVERVYSALNHKY GUGKTRLLAHAIGHYARTDSSVRVKY FLQGKEQTHEEFFHTFNTLHSSEKQI IAILERKAAADKLDIPDOVLHLIASK MFGGDSGQITF7MILEETAGIYVISY GGRDHTTVMHAERKIKQLLGEDRRVY	LLEGTALLAVKYDHVXDAVYEGH DEEDDPATGEGFLSTAVDCAVE FFDTFVLGSSNRFAHAATAV NISEEFINGTINAVSAGOANAF VITSOGPTKLISGFAERHASR SSNIRLEGALTVTAPASIS ESNIRLEGALTVTAPASIS I QGAESSENLTRAGIAWI FEVSELTSIIRKKAARGRX	LLR XH IZA IZA IZA IZA IZA IZA IZA IZA IZA IZA		
Sequence identifi	er (for definition line if raw sequ	ence entered):			
The email option a activate this option	allows the user to be notified by a, check the box to the left and f	email when the hmmpfam ll in an email address in th	search is completed. The end to the right.	mail will contain a link to the results. Use this option	when running a lengthy search. To
		Send a link	k to results to email address		
		/	Start HMM search	Reset	
Ligura	2.2 The TICDE	M stort page u	with the Vood O	0010 amina agid gagyanaa an	tarad The start

Figure 3.2. The TIGRFAM start page with the Ksed_00010 amino acid sequence entered. The start HMM search button is indicated by the arrow.

- 5. The TIGRFAM results page will look something like that shown in Figure 3.3. Ksed_00010 has two TIGRFAM hits. Record the TIGRFAM name, number, score and E-value from the results obtained in your GENI-ACT notebook.
 - 5.1. Only record results with a positive score and an E-value $< 10^{-3}$.

5.2. After searching the TIGRFAM database, raw text results will show which TIGRFAMs match. The name of the TIGRFAM ('Description' column) may be cut off (see caption to figure 3.3). To find the entire name, identify the TIGRFAM number (e.g. TIGR by the code found in the 'Model' column.

J. Craig Venter	
INSTITUTE	
<pre>hmmpfam - search one or more sequences against HMM database HMMER 2.3.2 (Oct 2003) Copyright (C) 1992-2003 HHMI/Washington University School of Medicine Freely distributed under the GNU General Public License (GPL) HMM file: TOGA_LIB_bin.HMM Sequence file: hmmpfam-search-15283-1404415246.in Query sequence: Ksed_00010 Accession: [none] Description: amino acid sequence Scores for sequence family classification (score includes all domains): Model Description Score E-value N </pre>	← Figure 3.3. TIGRFAM results for Ksed_00010. Two hits are seen with significant E values, but the 1 st hit, TIGR00362 has a much higher score and lower E value than the 2 nd hit. Note the name of TIGR00362 is truncated (column labeled Description). See the text for the way to get the full name.
+e ++++ + ++1+e+ +++1++++ v p+ + +++ + p++ Ksed_00010 58 AVEGHLREDVSTALAEVLDRDIRLAVSVDPDAVSAAQEEAaPPA 101	

PAGE 62 OF 193

5.3. To find the full description/name of the TIGRFAM, navigate to:

http://www.jcvi.org/cgi-bin/tigrfams/Listing.cgi and scroll down the list to find the complete TIGRFAM name and the category term (Figure 3.4). You can also get to the full description of all TIGFAMs by opening a new TIGRFAM search window and then first clicking on the TIGRFAMs Page tab, and then on the link for TIGRFAMS Complete Listing. You must then scroll down the list of TIGRFAMs (numbered from low to high) to find the TIGRFAM hit obtained during the search.

	common domain		
TIGR00351 narI	respiratory nitrate reductase, gamma subunit	equivalog	1.7.99.4
TIGR00353 nrfE	cytochrome c-type biogenesis protein CcmF	equivalog	
TIGR00354 polC	DNA polymerase II, large subunit DP2	equivalog	2.7.7.7
TIGR00355 purH	phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase	equivalog	2.1.2.3 3.5.4.10
TIGR00357 TIGR00357	methionine-R-sulfoxide reductase	equivalog_domain	1.8.4
TIGR00358 3_prime_RNase	VacB and RNase II family 3'-5' exoribonucleases	superfamily	3.1.13.1
TIGR00359 cello_pts_IIC	PTS system, cellobiose-specific IIC component	equivalog	2.7.1.69
TIGR00360 ComEC_N-term	ComEC/Rec2-related protein	subfamily_domain	
TIGR00361 ComEC_Rec2	DNA internalization-related competence protein ComEC/Rec2	equivalog	
TIGR00362 DnaA	chromosomal replication initiator protein DnaA	equivalog	
TIGR00363 TIGR00363	lipoprotein, YaeC family	subfamily	
TIGR00364 TIGR00364	queuosine biosynthesis protein QueC	equivalog	
TIGR00365 TIGR00365	monothiol glutaredoxin, Grx4 family	equivalog	
TIGR00366 TIGR00366	TIGR00366 family protein	hypoth_equivalog	
TIGR00367 TIGR00367	K+-dependent Na+/Ca+ exchanger homolog	hypoth_equivalog	
TIGR00368 TIGR00368	Mg chelatase-like protein	hypoth_equivalog	
TIGR00369 unchar_dom_1	uncharacterized domain 1	domain	
TICD00270 TICD00270	concor histidino kinaco inhibitor. KinT family	hupath aquivalan	

Figure 3.4. The TIGRFAM listing page. The arrow points to the TIGRFAM with the truncated name described in figure 3.3. Note that it is classified as an equivalog. Clicking on the hyperlinked TIGRFAM number will open a more detailed description page as shown in figure 3.5.

5.4. Clicking on the hyperlink for the TIGRFAM number will open a more complete description of the HMM that will over insight about the function of your protein (Figure 3.5).

→ TIGRFAMs Home	HMM SUMMARY PAG	GE: TIGR00362
→ TIGRFAMs Terms	Accession	TIGR00362
→ TIGRFAMs Complete Listing	- Name Function	DnaA chromosomal replication initiator protein DnaA
→ TIGRFAMs FTP site	Gene Symbol	dnaA 243.00
→ TIGRFAMs Resources	Domain Trusted Cutoff	343.90
→ TIGR00362 Seed Alignment	Domain Noise Cutoff	184.65 184.65
	 Isology Type HMM Length Mainrole Category Subrole Category Gene Ontology Term 	equivalog 437 DNA metabolism DNA replication, recombination, and repair GO:0003677: DNA binding molecular_function GO:0003688: DNA replication origin binding molecular_function GO:0005224: ATP binding molecular_function GO:0006270: DNA-dependent DNA replication initiation biological_process GO:0006275: regulation of DNA replication biological_process
	Author Entry Data	Loftus BJ, Haft DH
	Last Modified	Feb 14 2011 3:27PM DnaA is involved in DNA biosynthesis: initiation of chromosome
	Comment	replication and can also be transcription regulator. The C-terminal of the family hits the pfam bacterial DnaA (bac_dnaA) domain family. For a review, see Kaguni (2006). RN [1] RM PMID:16753031 RT DnaA: controlling the initiation of
	References	bacterial DNA replication and more. RA Kaguni JM RL Annu Rev Microbiol. 2006;60:351-75. DR PFAM; PF00308; bac_dnaA; DR PROSITE; PDOC00771; DR ECOCYC; EG10235; dnaA; DR SWISSPROT; P03004; SE TIGR DR HAMAP; MF_00377; 410 of 419
	Genome Property	GenProp0799: bacterial core gene set, exactly 1 per genome (HMM) GenProp0806: replication initiation, bacterial (HMM)

Figure 3.5. The detailed description page for TIGR00362

5.5. Record the information requested for any significant TIGRFAM hits you find in your GEN-ACT notebook as shown in figure 3.6. It is also useful to copy and paste any details from the comment section of the detailed TIGRFAM listing (see Figure 3.5) to give you additional background information about your protein.

TIGRFAM
go to TIGRFAM at http://tigrblast.tigr.org/web-hmm
TIGRFAM number 🗐
TIGR00362
TIGRFAM name 🗐
chromosomal replication initiator protein DnaA
Score
740.9
E-value
3.8e-220

Figure 3.6. The TIGRFAM geni-act notebook page with the information from the top TIGRFAM hit (TIGR00362) entered. Note the name is DnaA, but additional functional information has been added to remind the annotator that DnaA acts as a chromosomal replication initiator protein.

Protein Family (Pfam):

1. Go to <u>http://xfam.org/</u> and select the Pfam option as shown by the arrow in figure 3.7. Note that the link in the GENI-ACT notebook my not take you directly to the xfam.org site, but there is a hyperlink on the page you will be taken to that will take you to the xfam site.

2. Click the "Search" tab at the top of the page as shown in figure 3.8 to access the main Pfam search page.

Figure 3.8. The Pfam search entry page. Click on the search tab as indicated by the arrow to begin the search.

PAGE 66 OF 193

- 3. Click on the "Sequence" option and paste the FASTA formatted sequence of the protein under investigation in the sequence text box as shown in Figure 3.9.
 - **3.1.** Change the E-value to 0.001 and click submit.

EMBL-EBI	н	IOME SEARCH BROWSE FTP HELP ABOUT
Search Pfam		0 architectures 0 sequences 0 interactions 0 species 0 structures
Sequence	Sequence search	
Batch search Keyword	Find Pfam families within you More	Ir sequence of interest. Paste your protein or DNA sequence into the box below to have it searched for matching Pfam families.
Taxonomy	Sequence	> Ksed_00010 amino acid sequence VSQTPDDHATAIWQEAMVHLQGAGLAPRDIGVLRLATLVGLLEGTALLAVKYDHVKDAVEGHLR EDVSTALAEVLDRDIRLAVSVDPDAVSAAQEEAAPPAPSPADEDDPATGEGPLSTAVDGAVEKH EGSSPARAGESVAPATTASLTATNSSPCHEDVSALNHKYTPTDVLGSSNRFAHAAATAVAEA
Jump to 🔅		PARAYNPLFVCGSCLGKTHLLHAIGHYARTLDSSVRVKYVNSEEFTNGFINAVSAGQANAFQR QYRDVDVLLIDDIQFLQGKEQTMEEFFHTFNTLHNSEKQIVITSDQPPKKLSGFAERMRSRFEW GLITDVQPPDLETRIAILRRKAAADKLDIPDDVIHLIASKISSINRELEGALTRVTAFASLSGS PLDEYLARTVLKDVMPGGDSGQITPTMILEETACYFVISVEEIQGASRSRNLTRARQIAMYLCR ELTDLSLPKIGKEFGGRDHTTVMHAERKIKQLLGEDRRVYDEVSELTSIIRKKAARGRX
		Note: we cannot guess the type of this sequence based on the alphabet. The controls below will remain enabled but the values will be ignored by the server if your sequence is DNA.
	Cut-off	Gathering threshold
		⊙ Use E-value
	E-value	0.001
	Search for PfamBs	Note that we search only the 20,000 largest Pfam-B families Submit Reset Example protein sequence Example DNA sequence
		Comments or questions on the site? Send a mail to pfam-help@ebi.ac.uk . European Molecular Biology Laboratory

Figure 3.9. The Pfam search start page with the amino acid sequence of Ksed_00010 pasted into the text window.

4. A results window will appear similar to the one shown in figure 3.10 if you have significant Pfam-A hits. If you do not get any hits return to the PFAM start page, click the Search for Pfam-Bs check box and repeat the search.

EMBL-E	BI 🌒 💡	OME SE	ARCH	BRO	WSE	FTP		IELP	AB	ουτ			P	fam ord search Co
Sequence	search results													
Show the deta	iled description of this results page.													
We found 2 Pfa Show the sear Return to the s	m-A matches to your search sequence (ch options and sequence that you submi earch form to look for Pfam domains on	all significant) tted. a new sequen	ce.	not choo	Bac <mark>u</mark> Dr	search f	or Pfai	m-B mat	tches.					
Significant	Pfam-A Matches I alignments.													
Family	Description	Entry	Clan	Enve	lope	Aligni	ment	нм	М	нмм	Bit	E-value	Predicted	Show/hide
. cinny	Description	type	Clair	Start	End	Start	End	From	То	length	score	L-Value	active sites	alignment
Bac DnaA	Bacterial dnaA protein	Family	CL0023	164	382	164	381	1	218	219	326.0	1.1e-97	n/a	Show
Bac DnaA C	Bacterial dnaA protein helix-turn-helix	Domain	CL0123	408	477	409	477	2	70	70	104.5	1.8e-30	n/a	Show
		Comments Eur	or questions opean M	on the sit	e?Send ar Bi	a mail to j ology	pfam-he Labo	elp@ebi.a ratory	c.uk.					

Figure 3.10. Pfam results for Ksed_00010. See the text for an explanation of the results.

PAGE 67 OF 193

- 5. Interpretation of Pfam results (taken from http://pid.nci.nih.gov/2011/110913/full/pid.2011.3.shtml-f6).
 - **5.1.** The columns labeled family (domain), description, entry type and clan give the specifics of these for each of the Pfam hits. The predicted active site column will indicate if an active enzyme site is included in the HMM. The GENI-ACT notebook will have entries for a number of items that follow (Figure 3.11) and you should enter information in the notebook as you encounter it. However, there is much additional information important for determining the function of your protein than is requested in your online notebook, and it will likely to record additional findings in a notebook you keep for yourself.

Pfam		
go to Pfam at http://pfam.sanger.ac.uk/search		
Pfam number (PF####) for top hit 🗐		
Pfam name 🖩		
Clan name 🖩	←Figure 3.	11.
	The GENI-	ACT
Clan number (Cl.####)	notebook fo	or the
	Structure B	aced
Score ill	Evidence N	lodule
		louule
E-value 🖩		
Pairwise alignment 🖩		
HMM logo 🖩		
Key functional/structural residues (e.g. I2, W7, F13)		

- 5.2. Scores: Using the search parameters described above will result in matches being reported that have an E-value less than or equal to 10^{-3} (or whatever threshold you have set on the search page).
- **5.3.** Alignment and envelope coordinates: Each sequence match to a Pfam HMM will have two sets of coordinates: the alignment coordinates and the envelope coordinates. The envelope coordinates indicate the region on the sequence over which the match lies, whereas the alignment coordinates indicate the region over which the alignment confidence is high.
- 5.4. Graphically, the alignment coordinates are depicted with a solid color and the envelope coordinates in a lighter shade of the same color. When the region within the envelope coordinates does not match the entire length of a HMM, the match is said to be partial; graphically, this is drawn with a jagged edge at the N or C terminal or both, depending on which region of the match is incomplete.
- 5.5. The option to display the residue-by-residue scores is also available via the show/hide button (Figure 3.12). When the alignment is 'shown', the #HMM line shows the consensus amino acid sequence of the model, with capital letters representing the most conserved (high information content) positions, and dots (.) indicating insertions in the query sequence with respect to the model. Identical residues are colored cyan, and similar residues are colored dark blue, the #MATCH line indicates matches between the model and the query sequence, where a + indicates positive score, interpretable as "conservative substitution" with respect to what the model expects at

that position; the #PP line represents the posterior probability (essentially the expected accuracy) of each aligned residue, where a \circ means \circ -5%, 1 means 5–15%, and so on to 9 meaning 85–95% and a * meaning 95–100% posterior probability (pp); the #SEQ line is the query sequence, colored according to the pp for each residue match on a scale from bright green for * through paler green and pale red down to bright red for \circ .

EMB	L-EBI			HOME	SEARC	:H BR	OWSE	FTP H	IELP AB	оит					Pfam keyword se Go
Sequence search results Show the detailed description of this results page. We found 2 Pfam-A matches to your search sequence (all significant). You did not choose to search for Pfam-B matches. Show the search options and sequence that you submitted. Return to the search form to look for Pfam domains on a new sequence. Significant Pfam-A Matches Show or bidg all alignments. Family Clans Entry Clans Start for Start for Vigatkinia alignments. Inskyr: Empring and sequence helicy of the search option start search search option to look for Pfam domains on a new sequence. Significant Pfam-A Matches Stow or bidg all alignments. The search results Bac. DnaA Bacterial dnaA protein Family Clans Entry Clans Start for domains and sequence the like-turn-helix Domain Alls Bac. DnaA Bacterial dnaA protein helike-turn-helix Domain Alls Start for domain and protein helike-turn-helix Domain Gamments or questions on the site? Send Comments or questions on the site? Send	Bac: DasA	-													
Signific Show o	c ant Pfam-A Mat or r <u>hide</u> all alignmen	:hes is.	E-t		Found		Alian		LIM					Produkted	et au chia
	Family	Description	type	Clan	Start	End	Start	End	From	То	length	score	E-value	active sites	alignmen
	Bac_DnaA	Bacterial dnaA protein	Family	CL0023	164	382	164	381	1	218	219	326.0	1.1e-97	n/a	Hide
#HMM #MATCH #PP #SEQ	InkkytfenF In+kytf++F 689******	r <mark>igssNklAlaaalavaeapgkkynPlfiygevGlGK</mark> / gssN++A+aaa+avaeap+++ynPlfiyg++GlGK /LGSSNKFAKAAATAVAEAPARAYPLFIYGGSGLGK	tHLLqaignevlen tHLL+aig+++++ THLLHAIGHYARTL	npnarvvYltaceFl +++rv+Y+++ceF+	kelvdalrdk	kiekfkkey ++++f+++y QANAFOROY	vrkvDllliDD vr+vD+lliDD	iqflakkek iqfl++ke+	tgeelfhifna t ee+fh+fn+ THEEFFHTFNT	lleenkqiv 1++++kqiv LHNSEKQIV	IssDraPkelee ++sD++Pk+l++	ledrlrsrfeaG + +r+rsrfe+G FAERMRSRFEWG	lvveickpdletrla l++++++pdletr+a LLTDVOPPDLETRIA	ilekklecenleipeevlefia il++k+ +++l+ip++vl++ia	<mark>grvesnyRelegalkr</mark> ++++sn+Relegal+r- SKISSNIRELEGALTRY
	Bac_DnaA_C	Bacterial dnaA protein helix-turn-helix	Domain	CL0123 Comments	408 s or question Europea	477 ns on the s an Molec	409 ite? Send a cular Biol	477 mail to pfa ogy Labo	2 m-help@ebi pratory	70 .ac.uk.	70	104.5	1.8e-30	n/a	Show

Figure 3.12. The Pfam results page with the show alignment option selected. See text section 3.5 above for an explanation.

5.6. Clicking on the hyperlink for the top hit Family name will open a family page similar to the one shown in Figure 3.13 for the top Pfam hit for Ksed_00010. The family page for a Pfam-A family contains the functional annotation at the top of the page, derived either directly from the Wikipedia entry for that family if one is available or from Pfam or InterPro. At the side of the page are a number of tabs, each relating to a different set of data, some of which we will discuss below. Read any text written on this page carefully. Since each Pfam domain has been manually curated, this information can be extremely useful in predicting the function of the query gene that contains the domain. If ever a GO or EC number is given, record that number in the Lab Notebook as it will aid in predicting the function of the gene product.

Family: Bac_DnaA	(PF00308)	14 architectures	6279 sequences	2 interactions	4628 species	18 structures
Summary	Summary: Bacterial dnaA protein					
Domain organisation Clan	Pfam includes annotations and additional family information from a range of different source	es. These sources can be	accessed via the tabs below	w.		
Alignments HMM logo	Wikipedia: DnaA Pfam InterPro					
Trees Curation & model	This is the Wikipedia entry entitled "DnaAs". More					
Species	DnaA Edit Wikipedia article					
Interactions Structures	DnaA is a protein that activates initiation of DNA replication in prokaryotes. ^[1] It is a repli- onset of the initiation phase of DNA replication is determined by the concentration of DnaA	cation initiation factor wh	ich promotes the unwindin	g of DNA at oriC. ^[1] The	Chromoso	mal replication initiator protein dnaA
Jump to 🕸	replication. ^[1] Replication begins with active DnaA binding to 9-mer (9-bp) repeats upstrea	am of oriC. ^[1] Binding of	DnaA leads to strand separ	ation at the 13-mer repeats.		Identifiers
enter ID/a Go	[1] This binding causes the DNA to loop in preparation for melting open by the helicase Dn	aB.[1]			Organism	Escherichia coli (str. K-12 substr. MG1655
	Contents []	Symbol	DnaA			
	1 Function				Entrez	948217#
	2 References				RefSeq	NP_418157.1#
	3 Further reading				(Prot)	
	4 External links				UniProt	P03004#
	Europhics [edit]					Other data
	Function[edit]				Chromosom	e genome: 3.88 - 3.88 Mb
	The active form DnaA is bound to ATP. ^[1] Immediately after a cell has divided, the level of ATP, the formation of the oriC/DnaA complex and subsequent DNA unwinding does not req	factive DnaA within the c uire ATP hydrolysis. ^[2]	ell is low. ^[1] Although the a	active form of DnaA requires		Bac_DnaA_C
	The oriC site in E. coli has three AT rich 13 base pair regions (DUEs) followed by four 9 bp around the proteins causing the DNA at the AT-rich region to unwind. There are 8 DnA bit replication is about to commence, DnA occupies all of the high and low affinity binding sit which complexes with DnaC (helicase loader). DnaC helps the helicase to bind to and to pr hydrolysis, after which DnaC is released. Single-strand binding proteins (SSBs) stabilize th helicase, so it travels on the lagging strand. It associates with DnaG (a primase) to form th strand. The interaction between DnaG and DnaB is necessary to control the longitude of OI DNA replication.	regions. ^[3] Around 10 D nding sites within oriC, to tes. The denatured AT-rici operly accommodate the e single DNA strands in o e only primer for the lea kazaki fragments on the l	naA molecules bind to the 9 which DnaA binds with diff region allows for the recri- soDNA at the 13 bp region rder to maintain the replica ding strand and to add RNA agging strand. DNA polyme) bp regions, which wrap recential affinity. When DNA ultment of DnaB (helicase), is this is accomplished by ATP stion bubble. DnaB is a 5' \rightarrow 3' k primers on the lagging arase III is then able to start	crystal st comple	ructure of dnaa domainiv exed with dnaabox dna
	DnaA contains two conserved regions: the first is located in the central part of the protein	and corresponds to the A	TP-binding domain, the sec	cond is located in the C-		Identifiers
	terminal half and is involved in DNA-binding. ^[4]				Symbol	Bac_DnaA_C
	Poferonenc[edit]				Pfam Dfam also	PF08299#
	References[edit]				Pram clan	LDD012150 #
	 A a b c d e f g h i Foster JB, Slonczewski J (2009). Microbiology: an evolving science 	e. New York: W.W. Norto	n & Co. ISBN 0-393-97857	-5.	Interpro	1PK013159 #
	Leonard AC, Grimwade JE (December 2010). "Regulating DnaA complex assembly	: it is time to fill the gaps	" #. Curr. Opin. Microbiol. 1	3 (6): 766-72.	JCOP	1)1// //

Figure 3.13. The Domain Summary page for Bac_DnaA.

6. On the left menu of the Domain Summary page, click "HMM Logo" to access this very useful way of visualizing amino acid conservation among the sequences used to build the Pfam domain (Figure 3.14.) HMM Logos provide the researcher with a quick overview of the features of a profile HMM while conserving as much information as possible. Similar to the sequence logo generated by WebLogo earlier, on the HMM logo, the larger the letter, the more conserved this residue is in the protein family. Colors correspond to different amino acid types (e.g. neutral, acidic, etc.). Letters are sorted in descending order depending on their probability of occurring at a given position in a sequence that contains the domain. Right click on the HMM logo and choose "copy image". You should then paste the image into Paint (PC) or Preview (Mac) and save the image file as a png. You can then sections) upload it to the Lab Notebook.

7. To find potential key functional residues (amino acids), we need to compare the pairwise alignment results with those of the HMM logo. This is illustrated in figure 3.15 below, where the arrows link amino acids in the HMM logo to the pairwise alignment of the query protein to the HMM. There are a number of amino acids that are predominant in the model HMM as indicated by the large wide letters at various positons in the logo (LI, F7, F10, P36 etc; amino acid position indicated by numbers at the tip of the HMM logo). Comparing the pairwise alignment to the HMM logo, one can see that LI, F7 (left arrow), F10 and P36 (right arrow) are exact matches of the Ksed_00010 amino acids in the sequence meeting this criterion should be listed as being possible key functional residues. Note that there appears to be significant variability among proteins used to create this model HMM, as indicated by the large number of smaller letters under the predominant amino acids at those positions.

Figure 3.15. Comparison of the pairwise alignment and HMM logo results for Ksed_00010 and Bac DnaA.

- 8. Return to the Pfam results summary page to record Clan Information. Click in the Clan hyperlink for the Pfam hit on which you are working and then record the Clan Name and Number from this page in your Notebook.
- 9. Repeat procedure for all significant PFAM hits.

GENI-ACT MANUAL

Protein Data Bank (PDB)

- Go to <u>http://www.rcsb.org/pdb/home/home.do</u> and click on Advanced to begin your search (Figure 3.16)
- 2. Choose the BLAST/FASTA/PSI-BLAST option from the query type pull down menu. There are a number of choices sorted heading and subheading in the pull down. You will need to scroll down to the Sequence Features heading in the list, under which you will find the BLAST/FASTA/PSI-BLAST option, as indicated by the arrow in Figure 3.17.

RCSB PDB Deposit - Se	arch • Visualize • Analyze • Downl	oad - Learn - More -	MyPDB Login 👻	
		1023		
	An Information Portal to 106082 Biological	Search by PDB ID, author, macromolecule	, sequence, or ligands Go	
PROTEIN DATA BAN	K Macromolecular Structures	Advanced Search Browse by Annotations	Set at a taken	
3 PD6-101	ANTALY SURVICES IN ANTALASE KNOWLEDgebase			
	A Structural View of B	iology	January Molecula of the Month	
Welcome	This resource is powered by the Protein	Data Bank archive-information about		
📀 Deposit	the 3D shapes of proteins, nucleic acid students and researchers understand a from protein supthesis to health and did	s, and complex assemblies that helps Il aspects of biomedicine and agriculture,		
	As a member of the wwPDB, the RCSE	PDB curates and annotates PDB data.		
C Search	The RCSB PDB builds upon the data b research and education in molecular bi	y creating tools and resources for		
M Visualize	biology, and beyond.			
III Analyze	Structure and Health Focus: E	Ebola Virus Proteins		
💀 Download				
	A CONSTRUCTION		see 20	
	Video Tour	Molecule of the Month Article	Cascade and CRISPR	
		STRADA		

Figure 3.16. The Protein Data Bank start page. Click on Advanced (see arrow)

RCSB PDB Deposit - Search - Visualize - Analyze - Downl	oad - Learn - More -	MyPDB Login
An Information Portal to		
PROTEIN DATA BANK Macromolecular Structures	Search by PDB ID, author, macromolecule	, sequence, or ligands Go
PDB-101	Advanced Search Browse by Annotations	
Advanced Search Interface Choose a Query Type: Choose a Query Type: Cho	cal structure (SMILES string)	
Protein Stoichiometry Protein Symmetry Browser (opens popup) Protein Symmetry Browser (opens popup) Number of Models	Result Count	
Number of Disulfide Bonds Link records Molecular Weight (Structure) Secondary Structure Content	Add Search Criteria	
Secondary Structure Length SCOP Classification Browser (opens popup) CATH Classification Browser (opens popup) Taxonomy Browser (opens popup)	Clear All Parameters Submit Query	
Sequence Features Sequence (BLAST/FASTA/FSI-BLAST) Translated Nucleotide Sequence (BLASTX) Sequence Matif		
Chain Length Genome Location Browser (opens popup) Chemical Components		The DCCE DDD (alterior) is menaged by two members of the
About About Us Citing Us Publications 1	eam Careers Usage & Privacy	Research Collaboratory for Structural Bioinformatics:

Figure 3.17. Selection of a BLAST search in PDB. Select the Choose Query Type pull down menu and select "Sequence (BLAST/FASTA/PSI-BLAST)" option

PAGE 72 OF 193

3. Paste the FASTA formatted sequence of your protein into the sequence text box. Change the "E Cut-Off Value" to 0.001 (Figure 3.18). Click the "Search" button and review the results. This runs a BLAST search just like you did in NCBI BLAST in the Sequence-based Similarity module. However, this is searching the query gene against all of the gene sequences that have solved structures in PDB (Figure 3.19).

Sequence (BLAST/FAS	STA/PSI-BLAST) ÷ Ø		
Structure Id			Result Count
Chain Id			
Sequence	> KSED_00010 AMINO ACID SEQUENCE VSOTPDDHATAIWOEAMVHLQGAGLAPRDIGVLRLATLVGLLEGTALLAVKYDHVKDAVEGHLR EDVSTALAEVLDRDIRLAVSVDPDAVSAAQEEAAPPAPSPADEDDPATGEGPLSTAVDGAVEKH	1.	
Search Tool	BLAST \$		
Mask Low Complexity	Yes ‡		
E-Value Cutoff	0.001		
Sequence Identity Cutoff (%)	0		
		Ad	d Search Criteria (

Figure 3.18. The PDB Advanced search page. The FASTA formatted Ksed_00010 amino acid sequence has been pasted into the sequence text box and the E-Value Cutoff has manually been changed to 0.001.

4. Examine the quality of the alignments between the query gene and the BLAST hits in the Protein Data Bank. If the E-value meets the cutoff set by your instructor, and a significant length of the protein is aligned, then this is a good hit. If two proteins are very similar in sequence and have approximately the same length, it is highly probable that they fold very similarly. Therefore, the structure that corresponds to the PDB BLAST hit likely resembles how the query gene product folds.

If your query results in one or more good matches, record the PDB Code, Name, Length, Score, Alignment length, and E-value into the Lab Notebook (Figure 3.20).

SENI-ACT MANUAL		M	ODULE 3 STRUCTURE	: BASED EVIDENC	Έ
Refinements	Currently showing 1 - 10 a	of 10 Page: 1 of 1		Displaying 25	+ Results
ORGANISM Aquifex aeolicus (3) Thermotoga maritima (2)	View: Report	ts: Sort: t one + Sort b	<i></i> ¢	Download Files	\checkmark
Shewanella amazonensis (2) Mycobacterium tuberculosis (2) Escherichia coli (1)	2.8	2Z4R		Download File	iew File 🗸
UNIPROT MOLECULE NAME		Crystal structure of d initiation protein Dna	omain III from the Thermo A	toga maritima replic	cation
Chromosomal replication i (8)		Chain(s): A,B,C			
Putative DNA replication (2) Refine Query		<u>Fujikawa, N., Ozaki, S., Ka</u> S., RIKEN Structural Geno	gawa, W., Park, SY., Katayama, mics/Proteomics Initiative	<u>, T., Kurumizaka, H., Yoko</u>	<u>oyama,</u>
TAXONOMY		A Common Mechanism fo Replication Origin	r the ATP-DnaA-dependent Form	nation of Open Complexe	es at the
Bacteria (10)	D 3D View	(2008) J.Biol.Chem. 283: 83	51-8362		
EXPERIMENTAL METHOD X-ray (10)		Released: 2008-02-19 Method: X-RAY DIFFRACTI Resolution: 3.05 Å Residue Count: 1320	Macromolecule C DN Chromosomal I Unique Ligands: 2 ADP MG	Content replication initia (protein 2)
X-RAY RESOLUTION	Sequence Alignment:				
1.5 - 2.0 A (1) 2.0 - 2.5 Å (3) 2.5 - 3.0 Å (1)	Length: 346 E-value: 1.0 (1%)	00794E-58 Score: 225.713bits (574)	Identities: 128/346 (37%) Posi	tives: 194/346 (56%) Ga	ps: 3/346
3.0 and more Å (5) Refine Query	162 170 .	0 180 190 . . .	200 210 22 I I I I	0 230 2 . I .	240 I -
RELEASE DATE	Query SALNHKYTFD	FVLGSSNRFXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	PLFIYGGSGLGKTHLLHAIGHYA	RTLDSSVRVKYVNSEEFTI	NQFINAVS
2000 - 2005 (2)	+ LN YTF+ Sbict TPLNPDYTFEN	FVTG N F YI NFVVGPGNSFAYHAALEVAKHPGR-YI	PLFIIGG GLGKTHLL +1G+Y PLFIYGGVGLGKTHLLOSIGNYV	+ +KV I+ SE+F I VONEPDLRVMYITSEKFLI	N ++++ NDLVDSMKI
2005 - 2010 (4)
2010 - 2015 (4)	96 100	110 120 13	140 150	160 170	18
Refine Query					

Figure 3.19. The top hit for the PDB search of Ksed_00010. The PDB code is 2Z4R, the name is "Crystal structure of domain III from...." and the E-value and score are as shown. The alignment of your sequence with that of the hit is also shown (using the slider at the bottom will allow the full alignment to be viewed from beginning to end.

PDB go to PDB at http://www.rcsb.org/pdb/home/home.do PDB code 🗐	
PDB name 🗐	Figure 3.20. The PDB notebook page.
E-value	

GENI-ACT MANUAL

MODULE 3 STRUCTURE BASED EVIDENCE

5. Insert the Alignment into the Lab Notebook. It cannot be downloaded as an image directly, and copy and paste results in the alignment being distorted in the notebook. There are two ways to efficiently capture the alignment for your notebook. One is to Grab or Snip the image in sections (with some overlap between sections), save them as .png files and upload them to the notebook one at a time. You should upload the images in REVERSE order in the notebook to make sure the rst part of the alignment is at the top of the notebook page and the subsequent sections follow in order. Each upload appears at the top of the page by default (Figure 3.21).

Pairwise alignment

162 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 0uery SLANEKTFUTPF1VSLGSNEFXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	475 12°- 16°
310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 PrKLS0FALERARTMOLITUOOPPLICTALIARMAAKLDIPOOLULIASITSSILSGALTAVTATARSLOGPLDEVIARTVIKDVP00000001PP-MILEETASYVUSUSEL00ASERNELTAAQIAMYLOEUTDLSIPPLOKUSUSEL00ASERNELTAAQIAMYLOEUTDLSIPPLOKUSUSEL00ASERNELTAAQIAMYLOEUTDLSIPPLOKUSUSEL00ASERNELTAAQIAMYLOEUTDLSIPPLOKUSUSEL00ASERNELTAAQIAMYLOEUTDLSIPPLOKUSUSEL00ASERNELTAAQIAMYLOEUTDLSIPPLOKUSUSEL00ASERNELTAAQIAMYLOEUTDLSIPPLOKUSUSEL00ASERNELTAAQIAMYLOEUTDLSIPPLOKUSUSEL00ASERNELTAAQIAMYLOEUTDLSIPPLOKUSUSEL00ASERNELTAAQIAMYLOEUTDLSIPPLOKUSUSEL00ASERNELTAAQIAMYLOEUTDLSIPPLOKUSUSEL00ASERNELTAAQIAMYLOEUTDLSIPPLOKUSUSEUTDLSIPLOKUSUSUSEUTDLSIPPLOKUSUSEUTDLSIPLOKUSUSUSEUTDLSINSUSUSUSUSEUTDLS	470 480 490 500 505 ↓

Figure 3.21. The pairwise alignment notebook page with the alignment pasted in as 2 separate png files.

6. A second, and easier method that can be used if the option is shown in your results, is to click on the report tab and select the "BLAST/FASTA/PSI-BLAST Results" tab as shown in figure 3.22 below. In the page that results, scroll down to the first pairwise alignment in the list (the top PDB hit) and SNIP or Grab the alignment as you did in your BLAST search in Module 2 (Figure 3.23)


```
>2Z4S:1:A pdbid entity chain(s) sequence
         Length = 440
 Score = 225 bits (574), Expect = 1e-58,
                                          Method: Compositional matrix adjust.
 Identities = 128/346 (36%), Positives = 194/346 (56%), Gaps = 3/346 (0%)
Query: 162 SALNHKYTFDTFVLGSSNRFXXXXXXXXXXXXXXXYNPLFIYGGSGLGKTHLLHAIGHYA 221
          + LN YTF+ FV+G N F
                                             YNPLFIYGG GLGKTHLL +IG+Y
Sbjct: 96 TPLNPDYTFENFVVGPGNSFAYHAALEVAKHPGR-YNPLFIYGGVGLGKTHLLQSIGNYV 154
Query: 222 RTLDSSVRVKYVNSEEFTNQFINAVSAGQANAFQRQYRD-VDVLLIDDIQFLQGKEQTME 280
             + +RV Y+ SE+F N ++++ G+ N F+ +YR VD+LLIDD+QFL GK
Sbjct: 155 VQNEPDLRVMYITSEKFLNDLVDSMKEGKLNEFREKYRKKVDILLIDDVQFLIGKTGVQT 214
Query: 281 EFFHTFNTLHNSEKQIVITSDQPPKKLSGFAERMRSRFEWGLLTDVQPPDLETRIAILRR 340
          E FHTFN LH+S KQIVI SD+ P+KLS F +R+ SRF+ GL+ ++PPD ETR +I R+
Sbjct: 215 ELFHTFNELHDSGKQIVICSDREPQKLSEFQDRLVSRFQMGLVAKLEPPDEETRKSIARK 274
Query: 341 KAAADKLDIPDDVLHLIASKISSNIRELEGALTRVTAFASLSGSPLDEYLARTVLKDVMP 400
              + ++P++VL+ +A + N+R L GA+ ++ + +G +D A +LKD +
Sbjct: 275 MLEIEHGELPEEVLNFVAENVDDNLRRLRGAIIKLLVYKETTGKEVDLKEAILLLKDFIK 334
Query: 401 GGDSGQITPT-MILEETAGYFVISVEEIQGASRSRNLTRARQIAMYLCRELTDLSLPKIG 459
                + P
                     ++E A + EEI SR+
                                                AR+I MY+ +
                                                               SL T
Sbjct: 335 PNRVKAMDPIDELIEIVAKVTGVPREEILSNSRNVKALTARRIGMYVAKNYLKSSLRTIA 394
Query: 460 KEFGGRDHTTVMHAERKIKQLLGEDRRVYDEVSELTSIIRKKAARG 505
                   V ++
                             LL ++++ + E+ I ++A G
          ++F
Sbjct: 395 EKFNRSHPVVVDSVKKVKDSLLKGNKQLKALIDEVIGEISRRALSG 440
```

Figure 3.23. The pairwise alignment of the top PDB hit for Ksed_00010 from the BLAST/FASTA/PSI-BLAST Results report.

GENI-ACT MANUAL

MODULE 3 STRUCTURE BASED EVIDENCE

- 7. If there is a literature reference that corresponds with the protein structure, it may be beneficial to read it. When a structure is published, the structural biologists frequently characterize the function of the protein and functional residues in the protein structure, and if these residues are present in your query gene, this may confirm the identity and function of your gene product.
- 8. The required information for this module should now be in your notebook. Between this module and the Sequence Based Similarity Module you may be able to hypothesize the name and function of your protein. However, do not be disappointed if you still cannot hypothesize a name or function for your protein, particularly if it is "hypothetical". Other modules that follow may lead you to determine whether the gene you are working on has been called correctly.
- There is also other information in PDB that you might find useful for the research poster you will **Q.** prepare for the capstone, including literature citations as described above. You can also look at the 3D structure of the hit in PDB either as a static image or as a dynamic model that you can manipulate. Click image of the top hit explore options. on the 3D to