
Erasmus Oware1, Walter Haines1, John Ringland2, Tulsi Kharel3, Karl Czymmek3,4, and Quirine Ketterings3 

1Department of Geology, SUNY at Buffalo, 126 Cooke Hall, Buffalo, NY 14260. 
2Department of Mathematics, SUNY at Buffalo, 244 Math Bldg, Buffalo, NY 14260. 
3Cornell University, Nutrient Management Spear Program, 323 Morrison Hall, Ithaca, NY 14853. 
4Cornell University, PRODAIRY, 328 Morrison Hall, Ithaca, NY 14853. 

Nitrogen (N) is an important nutrient in corn (Zea mays 
L.) production with both N deficiency and excess N having 
negative effects for crop yield and quality, and/or environment. 
Improving N rate determination to avoid over- or under-
fertilization requires knowledge of the soil N supply potential 
through mineralization (Nsoil) of soil organic matter (SOM). The 
SOM content of soil is typically estimated by loss-on-ignition 
(LOI). This method does not take into account differences in N 
pools within SOM and it is thus not possible to accurately predict 
Nsoil across soils. The Illinois soil nitrogen test (ISNT) [Khan et 
al., 2001] was shown to provide a more accurate estimation of 
Nsoil for corn in New York [Klapwyk and Ketterings, 2006]. 
Testing for ISNT-N involves soil sampling and laboratory analyses 
that can be time-consuming, expensive, and limited in spatial 
resolution. Electromagnetic induction (EMI) has become 
increasing popular in precision agriculture due to its ability to 
rapidly and inexpensively provide spatially continuous soil 
characterization. EMI can capture bulk soil properties, such as 
soil salinity, texture, cation exchange capacity, organic carbon, 
etc. [Corwin et al., 2003]. Hence, EMI may offer an opportunity 
to rapidly and inexpensively predict Nsoil at high spatial 
resolution. 

In a New York Farm Viability Institute (NYFVI) funded 
project, we aim to estimate Nsoil from EMI soil characterization. 
Toward this end, we surveyed a corn field in Central NY using a 
Geonics EM38-MK2 instrument mounted in a custom-made cart 
(Figure 1) to measure soil apparent electrical conductivity (EC) 
and magnetic susceptibility (MS). The EM38-MK2 instrument has 
two receivers, the 0.5 and 1 m separation receivers, so at each 
measurement location, a set of two EC and MS were measured. 
For spatial cohesion in the observed EC and MS, we resampled 
the EMI data on a 10 x 10 m regular grid by assigning the average 
of all EMI measurements in a grid to that grid location. To obtain co-located EMI and ISNT-N measurements for the 
predictive modeling, we collected a total of 52 soil samples over a composite depth of 0-20 cm on a one acre 
regular grid. Samples were analyzed for ISNT-N and LOI at the Cornell University Nutrient Management Spear 
Program Laboratory. We performed correlation analyses of the co-located EMI and ISNT-N data and found the EC 
for the 0.5 m receiver and the MS for the 1 m receiver to have the highest correlation coefficients of 0.56 and -
0.70 with ISNT-N, respectively. Figures 2A and 2B show, respectively, the EC and MS datasets with the highest 
correlations with ISNT-N used for the predictions. Ten of the 52 co-located data points were randomly selected for 
model validation (red star in Figure 2A) and the remaining 42 were used for the model calibration (black closed 
circles in Figure 2A).    

We applied a linear mixed model (LMM) approach [e.g., Oliver, 2010] for the ISNT-N prediction. The LMM 
considers the prediction as a summation of two terms, the fixed and random effect terms. Specifically, the fixed 
effect term was modeled as a linear combination of the covariates (EC and MS) in a least-squares sense with 
parameters θ_fx. The random effect term was modeled as geostatistical random variables with parameters θ_rnd, 

Figure 1: The EM38-MK2 instrument 
mounted in a custom-made cart for the 
electromagnetic induction survey.  



which are simply the parameters of a variogram 
(correlation length, sill and nugget variances) [e.g., 
Deutsch and Journel, 1998].  We first performed 
exploratory multivariate regression analyses of the 42 
model calibration data points to find an appropriate 
model structure (linear here) for the fixed effect 
term. We also performed exploratory variogram 
analyses to find an appropriate variogram model 
(exponential here) and appropriate ranges of θ_rnd. 
We then applied a Bayesian Markov chain Monte Carlo 
(Bayesian-McMC) sampling [e.g., Oware et al., 2019] 
for the model (θ_fx) calibration. Precisely, for each 
Bayesian-McMC iteration, we sampled uniformly over 
the ranges of θ_rnd to estimate a covariance matrix to 
weigh the least-squares estimation of θ_fx to propose 
a model. We also considered measurement errors in 
the random effect term (covariance matrix). We ran 
the chain for 100,000 iterations and retained the last 
50,000 models as posterior samples. 

For the model prediction, we applied the EC 
and MS (Figures 2A and 2B) to estimate ISNT-N for the 
entire field. Particularly, we predicted ISNT-N for the 
entire field for each set of the 50,000 posterior 
samples of θ_fx. Figures 2C and 2D show, 
respectively, the posterior mean and standard 
deviations of the 50,000 ISNT-N predictions. Compared 
to the EC, the MS (Figure 2B) shows a stronger 
footprint on the spatial structure of the predicted 
mean ISNT-N, with negative MS values corresponding 
to high ISNT-N, and vice versa. Figure 2D shows the 
spatial distribution of uncertainty in the mean ISNT-N 
prediction, with mean and maximum uncertainty of 30 
and 95 ppm, respectively. The model validation of the 
10 independent ISNT-N measurements (Figure 2E) 
indicate that most of the validation data (orange cross 
marks in Figure 2E) were captured within the 95% 
confidence interval of the mean, which reposes 
confidence in the predicted ISNT-N for the entire 
field. 

In summary, N fertilization guidelines for corn 
require knowledge of the amount of N that can be 
supplied by the soil, through soil mineralization. 
Knowing ISNT-N and LOI, can help identify where 

additional N is not needed. Here, we demonstrated the potential application of electromagnetic induction to 
rapidly and no-invasively estimate high resolution soil N 
supply potential. The results for the field in this study 
look promising. Data from additional fields are currently 
being evaluated. If EMI can accurately predict soil N 
supply potential at a much finer resolution and cheaper 
than can be done currently through analyses of soils for 
ISNT and LOI, it will have significant implications for 
guiding N use for corn.  

Figure 2: Observed apparent electrical conductivity 
(A), observed magnetic susceptibility (B), posterior 
mean (C) and standard deviation (D) of ISNT; scatter 
plot of observed vs predicted ISNT (E). The black 
filled circles and red stars in A show locations of the 
model calibration and validation data points, 
respectively. The black broken lines in E define the 
95% confidence interval of the mean. The orange 
cross marks represent the one-to-one plot of the 
observed ISNT-N.   
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